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a b s t r a c t

Automatic crop disease recognition in the wild is a challenging topic in modern intelligent agriculture
due to the appearance variances and cluttered background among crop diseases. To overcome these
obstacles, the popular methods are to design a Convolutional Neural Network (CNN) model that
extracts visual features and identifies crop disease images based on these features. These methods
work well on laboratory environment under simple background but achieve low accuracy and poor
robustness in processing the raw images captured from practical fields that contain inevitable noises.
In this case, Internet of Things (IoT) is attracting increasing attention, with many alternatives to
collect high-level contextual information that helps modern recognition system to effectively identify
crop diseases in the wild. Motivated by the usefulness of agricultural IoT, a deep learning system
using a novel approach named Multi-Context Fusion Network (MCFN), is developed to be deployed
in agricultural IoT towards practical crop disease recognition in the wild. Our MCFN firstly adopts a
standard CNN backbone to extract highly discriminative and robust visual features from over 50,000
in-field crop disease samples. Next, we exploit contextual features collected from image acquisition
sensors as prior information to assist crop disease classification and reduce false positives in our
presented ContextNet. Finally, a deep fully connected network is designed to fuse visual features as
well as contextual features and output the crop disease prediction. Experimental results on 77 common
crop diseases captured in our newly built domain specific dataset show that MCFN with the deep fusion
model outperforms the state-of-the-art methods in wild crop disease recognition, and achieves a good
identification accuracy of 97.5%.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

The crop disease is known to be a major issue for modern
agriculture, which always cause large losses to crop production.
Thus, the automatic and precise diagnosis and identification of
crop diseases play a crucial role in ensuring the high yield and
high quality of crops. Besides, it helps avoid the labor-intensive
manual crop disease identification in the fields. Currently, auto-
matic crop disease identification and analysis using static image
processing techniques [1,2] is a challenging topic, and has been
actively researched for applications such as the timely diagnosis
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of crop diseases [3], forecasting disease decisions [4], precision
pesticide [5], etc. Most of current imaging techniques are based
on the fluorescence, multispectral and hyperspectral [6,7], as well
as digital images [8,9]. Among these techniques, digital images
are usually captured by digital cameras, which could photograph
images with a high resolution.

The past few years have witnessed the advancement in the ef-
ficiency of computing power and the availability of large training
datasets. Some researchers focused on deep learning, especially
Convolutional Neural Network (CNN) to solve the crop disease
identification problem, which has been proven to hold the ca-
pability of outperforming previous works in various automatic
identification fields, such as visual recognition [10,11] and natural
language processing [12]. The most influential breakthrough in
the field of computer vision occurred when deep convolutional
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neural networks are chosen [13] to win the competition of Im-
ageNet Large Scale Visual Recognition Challenge (ILSVRC) [10].
Since then, deep learning has become one of the most popu-
lar approaches for identification task [14–16]. However, despite
the effectiveness of CNN in handling generic object recognition
tasks, using deep learning as ready-to-use recipe in crop disease
identification task is still suffering the problem of unsatisfied
performance due to the influence of practical wild scenario. De-
spite that there appear lots of deep learning based approaches
for recognizing crop diseases on various crops, such as banana
leaf disease [17], tomato plant disease [18] and rice disease [19],
few researchers focus on identifying multi-class crop disease
simultaneously in the wild environment. In general, this could
be attributed to the explanation that wild scenarios likely af-
fect the classifier in distinguishing different kinds of diseases.
In this paper, we target at solving the problem of multi-class
automatic crop disease identification whose images are collected
from wild circumstance using deep learning techniques, which
requires that the identification algorithms are highly robust to
various challenges of disease appearances.

An observation in current CNN based crop disease identifi-
cation approaches is that most of them try to extract visual
feature representations from 2D static images for prediction by
designing powerful enough models [20,21]. However, the bot-
tleneck of these methods is low-level visual features are not
insufficient for highly precise crop disease identification because
the lack of high-level semantic information provided. In addition,
wild circumstance might bring a serious difficulty with various
challenges (large illumination variation or background clutter)
into the captured raw images. In this case, relying on the sample
low-level visual features may not be a satisfactory solution. In
this case, Internet of Things (IoT) is attracting more and more
attention recently, with many alternatives to collect high-level
contextual information that could be potential to be extracted
as highly useful features to help modern recognition system to
effectively identify crop diseases in the wild. Therefore, the key
motivation for developing the deep CNN model for automatic
and precise multi-class crop disease identification system in the
wild is to exploit extra the contextual information captured from
image acquisition sensors in agriculture IoT as prior information
to assist crop disease classification and reduce false positives.

In this paper, motivated by usefulness of contextual informa-
tion from IoT sensors, a deep learning system using Multi-Context
Fusion Network (MCFN), is developed to be deployed in agri-
cultural IoT for solving these problems, whose architecture is
shown in Fig. 1. Our MCFN firstly adopts a CNN backbone to
extract highly discriminative and robust visual features from over
50,000 in-field disease samples. Next, we exploit contextual fea-
tures (temperature, humidity and so on) collected from sensors
as prior information to assist crop disease classification in our
presented ContextNet. Finally, a deep fully connected network
is designed to fuse visual features as well as contextual features
and output the crop disease prediction. Such this system could
an effective solution to precisely identify the crop diseases in the
wild environment and be used in practical IoT applications.

The main contributions of this paper are as follows:

(1) A novel CNN based architecture Multi-Context Fusion Net-
work (MCFN) is proposed and developed in agricultural IoT
to achieve precise crop disease recognition in the wild. This
approach exploits contextual information to improve the
recognition performance.

(2) Targeting at the wild crop disease identification task, a new
domain specific dataset is published in this paper. This
dataset contains over 50,000 crop disease samples with
77 categories, which covers almost all the common crop
diseases.

(3) A comprehensive and in-depth experimental evaluation
on our dataset is provided for validating the correctness
and usefulness of our proposed MCFN. The results show
that MCFN could achieve superior performance over the
state-of-the-art approaches in crop disease identification
task.

2. Related work

2.1. Machine learning for crop disease identification

Conventional crop disease identification methods [22–24] fo-
cused on recognizing single disease or a small number of diseases
and usually worked well only under controlled conditions in
the laboratory rather than wild scenarios, which contain many
influence factors such as uniform illumination, consistent scale or
position of the disease in the image. Although progress has been
made with respect to the disease identification problem, most
of the traditional methods are only capable of identifying some
specific types of diseases in the wild [25,26], but might not be
transferred to a large range of crop disease categories with pow-
erful ability of generalization. In general, this could be attributed
to the explanation that wild scenarios likely affect the classifier in
distinguishing different kinds of diseases. In this paper, we focus
on the automatic crop disease identification whose images are
collected from wild circumstance, which requires that the iden-
tification algorithms are highly robust to various challenges of
disease appearances, such as complex backgrounds, illumination
changes as shown in Fig. 2.

Generally, there are three separate steps to deal with this
task in conventional computer vision techniques: object segmen-
tation, feature extraction and pattern recognition. The goal of
segmentation is to filter the background from the leaf image
containing the symptoms [27–29], but segmenting the symp-
toms from the disease leaf images is particularly difficult when
the background is affected by significant amount of variation
elements, for example as can be seen in Fig. 1. Feature ex-
traction, the second step, is required to manually design fea-
tures for describing the relevant information of disease symptoms
and have made drastic progresses in many disease recognition
tasks. The common hand-crafted features contain SIFT [30] and
HOG [31]. Thirdly, a lot of classifiers, such as Support Vector Ma-
chine (SVM) [32] and K-Nearest Neighbors (KNN) [33], are studied
to predict the categories of an unknown crop disease image rep-
resented by hand-crafted features. Although these methods could
achieve a passable performance on crop disease identification
task [6,7], it is still difficult to obtain good performance from
disease images in wild scenarios containing various challenges
e.g. large illumination change and resolution variations.

2.2. Deep learning for agriculture insect pest and crop disease recog-
nition

In recent years, deep learning approaches, which is a novel
breakthrough in computer vision field, is promising for image
recognition and classification. Within convolutional neural net-
work adopted in modern computer vision and pattern recognition
tasks, the labor-intensive and hand-crafted feature engineering is
avoided. Based on these works, deep learning has been widely
employed in intelligent agriculture area for insect pest identifi-
cation and fine-grained crop disease recognition. For insect pest
classification task, [34] proposed a publicly available dataset that
contained 24 types of common pests for identification, which
provided a benchmark for insect pest research. Then, to expand
this work for much generalized, [20] investigated some hyperpa-
rameters in the state-of-the-art CNN based image classification
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Fig. 1. System Architecture. Surveillance and image collection equipment collects in-field crop images as well as contextual information.

Fig. 2. Examples of various disease symptoms in the wild.

approaches and used them to successfully identify more than 40
classes of insect pests with 96.75% accuracy. In terms of crop
disease recognition task, [19] built a dataset of 500 natural images
of rice leaves and stems that were diseased or healthy, which
were collected from rice experimental field. In this work, 10 com-
mon rice diseases were identified using deep CNN architecture
and the accuracy reached 95.48%. in order to address the issue
of small training samples in this dataset and insufficient disease
categories, the methods in [21] and [35] attempted to recognize
much more types of crop diseases rather than rice and finally
could identify 13 and 26 crop diseases respectively. In addition,
disease spot detection was also an effective way for precise crop
disease classification. [18] introduced the state-of-the-art generic
object detection approaches Faster RCNN and SSD for localiz-
ing crop leaves and disease spot with good performance (83%
detection accuracy). Despite these approaches showed a great
success in current crop disease recognition task, the advances in
this area slowed down in the last few years. Furthermore, most
of these methods might not achieve satisfactory performance in
practical crop disease recognition applications because of various
challenges in wild scenes during test image inference such as
illumination and complicated background shown in Fig. 2. There-
fore, inspired by break-through of deep learning in agriculture
field, we design our MCFN to solve the problems on practical crop
disease identification task by augmenting contextual information
to improve the performance.

3. Materials and methods

3.1. Data collection

There exist lots of open public dataset such as PlantVillage that
is a common dataset for crop disease identification task [36,37].
However, most samples in PlantVillage are photographed under
laboratory condition so the model trained on it might not perform
well in the wild environment. In order to address the issue of
crop disease identification in the wild, we build our own dataset
to verify the performance of our approach, in which the images

Fig. 3. Images captured in the laboratory and in the field. The two images on
the top are captured in the laboratory environment, in which the background is
pure blue. The bottom two images were samples that we captured, it had very
complex background noise in the images.

are captured in the practical fields. Compared with the images
collected in the laboratory environment, where noises are elimi-
nated manually, the images in our dataset hold more complicated
backgrounds as shown in Fig. 3. Thus, our built dataset is much
more suitable for training our model to recognize crop diseases
in the wild scenarios.

The hierarchical structure of our dataset is in accordance with
the plant species designated by agricultural experts. Particularly,
there are 19 different types of crops distributed in three main cat-
egories: grain, fruiter and vegetable in our dataset. Totally, these
crops contain diseases of 77 categories of these crops, where most
of samples are captured with CCD camera. In order to ensure the
enough visual information for some certain diseases with small
spot, the resolution of images is 1920×1440. After image collec-
tion, we manually filter out the noises among our data including
faded, blurry and duplicated images to maintain the consistency
of crop disease data and handle invalid information. With these
pre-processing operations, the generalization and identification
ability of our model trained on the dataset could be effectively
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Fig. 4. Sample distribution in our dataset.

improved. Currently, our dataset contains over 50,000 crop dis-
ease images. In order to make sure the authority and authenticity
of the image annotations, all of the captured crop disease imaged
are screened by agricultural experts carefully. In terms of anno-
tation, we invite more than 10 agriculture experts to label these
images. To guarantee the professionalism and correctness of these
labels, each image is labeled by at least 5 experts and the final
label is obtained by voting. The sample distribution of our dataset
is visualized in Fig. 4. After image collection, we randomly split
all of the images into 10 folds, where nine-tenths are selected
as training set and the rest part is used for validating our model
with cross-validation strategy. During training phase, we adopt
‘mirror’ data augmentation method to horizontally flipped the
original images to expand the training data volume, which could
further improve the generalization ability of our model.

3.2. Multi-Context Fusion Network (MCFN)

In this paper, we propose a novel CNN based approach named
Multi-Context Fusion Network (MCFN) whose pipeline is shown
in Fig. 5(b), which exploits contextual features to explore the crop
disease interaction between vision and prior knowledge of the
crop disease. Compared to the general CNN architecture shown
in Fig. 5(a), we introduce a novel branch to extract contextual
features and encode to fuse them with visual features together.
The contextual information, referred as temporal and spatial in-
formation in our work, consists of season, geographic location,
temperature and humidity. Potentially, the contextual informa-
tion is largely related to categories of crop diseases and could
be taken advantage to improve the identification performance. In
this case, we design our MCFN to make full use of the contextual
information to achieve a better classification accuracy. MCFN
contains three major parts: CNN backbone, ContextNet and fully
connected network. The CNN backbone is used for visual feature
ex-traction, which could automatically learn the appropriate fea-
tures from the training set rather than hand-crafted. In terms of
ContextNet, it is designed to fuse contextual information of crop
diseases. Finally, a deep fully connected network is designed to
fuse visual features as well as contextual features and output the
crop disease prediction. In MCFN, visual and contextual features

Fig. 5. General CNN and our proposed MCFN architecture.

could be learned jointly to capture the shared high-level semantic
information between images and prior knowledge of the crop
diseases. Eventually, MCFN could learn a joint embedding space
which facilitates efficient crop disease matching. Therefore, MCFN
closely connect visual and contextual information mechanisms
into a unified deep learning framework, achieving the state-of-
the-art performance in the crop disease recognition task under
our newly built domain specific crop disease dataset.

3.3. Convolutional Neural Network (CNN)

A Convolutional Neural Network (CNN) is a type of feed-
forward neural network in processing data with grid-like topol-
ogy. In the standard CNN, images are input into convolutional
layers computed with ‘convolutional kernel’ and pooling layers
for down-sampling. In our work, we apply different combina-
tions of these layers for extracting 3D image features which is
called ’feature map’ rather than 2D feature vectors. In general, a
CNN consists of three operations: convolutional layer, activation
function and pooling layer.
Convolutional layer: Convolutional layer is the main component
in a standard CNN that could automatically extract feature maps
from input 2D image by introducing a filterbank containing a
series of convolution kernels. Generally, for each kernel k, the
forward propagation process of convolution in layer l could be
represented by:

alk = σ (z lk) = σ (al−1
∗ W l

k + bl) (1)

Where the alk and al−1 are output of kernel k from layer l and
l − 1. σ (z lk) is the activation function. ∗ indicate the convolution
operation. W l

k and bl represent the convolution kernel and bias
in layer l respectively. Therefore, the output convolutional layer
could be computed as the sum of outputs from the filterbank:

al = σ (z l) = σ (
M∑

k−1

z lk) = σ (
M∑

k=1

(alk ∗ W l
k) + bl) (2)

Activation function: The activation function aims to introduce
non-linear decision boundaries to the network. The Rectified
Linear Unit (ReLU) that is defined as σ (z) = max(0, z) is an often-
used activation function in deep learning applications, as it is
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Fig. 6. AlexNet, VGG16 and ResNet50 training for crop disease identification.

considerably faster to train the model because of larger gradient
in (0, ∞) rather than alternatives such as the sigmoid function
that might cause gradient vanishing problem.

Pooling layer: A pooling function replaces the output of the
net at a certain location with a summary statistic of the nearby
outputs. Usually, convolutional layer is usually followed by a
pooling layer for feature dimension reduction. Besides, spatial
translational invariance is another benefit of pooling layer. The
widely used pooling operation is the max pooling operation,
which reports the maximum output in a receptive field and
discards other values. Max pooling helps to make the representa-
tion become approximately invariant to small translations of the
input.

3.4. Visual feature extraction: CNN backbone

In our research, CNN backbones are utilized to extract the fea-
tures of the crop image and identify the corresponding diseases.
From the perspective of feature extraction, we adopt AlexNet [13],
VGG16 [38] and ResNet50 [11] as our visual feature extrac-
tion networks. The AlexNet was proposed by [13], and won
the championship of the 2012 ILSVRC competition, achieved a
winning top-5 accuracy of 84.7%, compared to 73.8% achieved by
the second-best entry. The VGG network was proposed by the
Oxford Vision Group and it won the championship in the 2014
ILSVRC competition. Furthermore, ResNet is the state-of-the-art
CNN backbone for image recognition task, which adopts residual
module that skips connection between convolution operations.
Therefore, the current researches have proved the effectiveness
of these two CNN backbones.

The structures of AlexNet and VGG16 used in our method
are visualized in Fig. 6. As it can be seen, AlexNet is comprised
of 8 layers of network, containing 5 convolutional layers and 3
max pooling layers. ReLU is followed by each convolutional layer.
AlexNet selects large kernel size for enlarging the respective field
to make sure the noises could be filter better at the beginning
of training. Differently, VGG16 consists of 16 layers of network,
in which 13 convolutional layers and 3 max pooling layers are
augmented for feature extraction. The network uses nothing but
small convolution kernel at 3×3, which is the smallest size ca-
pable of capturing all directions and central concept. Multiple
convolution layers at 3×3 display greater nonlinearity than one
convolutional layer of large size, making the function more de-
terministic and greatly reducing the number of parameters. Due
to network depth and small size of convolution kernel that helps
realize implicit regularization, VGG network could start to con-
verge when there is just a few of iteration times. For ResNet50,
there are 50 layers that contains several residual modules. Due

the large depth, ResNet50 has been becoming one of the pop-
ular networks for image recognition task. Therefore, we select
AlexNet, VGG16 as well as ResNet50 as CNN backbones in our
system to accomplish the visual feature extraction of crop disease
images.

3.5. Contextual feature extraction: Contextnet

The CNN backbones could predict the category of crop disease
based on visual features from raw input image. But in the wild
application scenarios, it is hard to extract powerful enough fea-
tures for precise crop disease prediction. To address this issue,
we design a parallel network ContextNet to extract the extra
information: contextual features. During data collection, there are
amount of contextual information that could be obtained, such as
spatial, temporal and weather. The information could describe the
crop disease from a high-level semantic aspect. So intuitively, the
contextual information might be helpful to obtain a more correct
category prediction of diseases. In order to extract and encode
the contextual information it to integrate together with visual
features, we design ContextNet for this specific purpose whose
architecture is shown in Fig. 7.

At the beginning of ContextNet, we need to encode the col-
lected context in-formation including spatial and temporal fea-
tures to make them fit the network as the context collected as
text form. In our method, we select a Bag-of-Word (BoW) [39]
encoding algorithm to transform the contextual information into
a 1D vector because each context text is relatively independent.
In our BoW approach, we build a dictionary containing all of
the contextual information (geometric locations, season). And
then we add the information into the corresponding index in
the dictionary to conduct a 1D context feature vector. Finally, we
normalize the 1D feature vector into (0,1). In this way, we could
encode the contextual in-formation for training ContextNet.

In the next step, the context features and visual features are
not clearly similar in nature and their scales are large differ-
ent. Specifically, context features indicate a high-level semantic
information while visual features are used to describe content
information of images. In this case, we might not directly con-
catenate them together in the same level, so our ContextNet
employs a feedforward subset to the end of CNN backbones,
which consists of a series of fully connected layers. And then we
fuse the extracted context features to visual features at the final
fully connected layer. In this way, we could successfully augment
the context information into our system.
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Fig. 7. ContextNet for contextual feature extraction.

Fig. 8. Fine-tune strategy for crop disease identification.

3.6. Fine-tune

Fine-tune is a strategy of transfer learning [40], which uti-
lize massive task weakly correlated data to obtain a pre-trained
model, and couple with the task specific data, to train new model.
The advantage of Fine-tune is that it could solve the problem of
small amount data trained for neural network. Besides, Fine-tune
strategy could also avoid the problem of gradient vanishing as it
provides excellent weights for shallow layers in the new model.

First of all, the network goes through sufficient data on Im-
ageNet dataset for pre-training. In ImageNet, the last full con-
nected layer of network could output a 1000-Dimensional tensor
for predicting possibility of 1000 categories of input image. Al-
though this pre-trained model is not capable of identifying crop
diseases for our task, it could provide initial values for our MCFN
network which are good enough to extract shallow features.
So, we modify the last fully connected layer and set its output
dimensions to 77, corresponding to the number of crop disease
categories in our task. Then, our MCFN model is re-trained using
our wild crop disease dataset so the weights could be fine-tuned.
In this way, our network could be trained and applied to the
crop disease identification task with fewer iterations and better
performance. The process of Fine-tune is shown in Fig. 8.

3.7. Optimization and evaluation

To optimize our model, loss function is the criterion for train-
ing process that guides the direction of model convergence. In
our approach, Softmax function is selected to predict the final
category of input sample and Cross-Entropy (CE) loss [41] is
adopted as the loss function. Generally, Softmax is an extension of
logistic regression used for multi-classification task without any
learnable parameters, which is defined as:

σ (zj) =
ezj∑K
k=1 ezk

(3)

Where K represents the number of classes so the output σ (zj)
is the possibility that the input sample is predicted as jth class.

Based on the softmax function as predictor, the CE loss is com-
puted by:

CE(y) = −

K∑
j=1

ŷj log(yj) (4)

In which the ŷk and yk are the ground truth and predicted
possibility of the input sample.

4. Results and discussion

4.1. Comparative results

Table 1 present the accuracy of different identification meth-
ods, where the hand-crafted feature is SIFT (Giselsson, Midtiby
and Jrgensen, 2013) that has been widely used in conventional
machine learning methods. It can be observed that MCFN using
ResNet50 as CNN backbone for extracting visual features achieves
the best performance with the highest accuracy. Among these
results, the lowest performance occurs in conventional machine
learning method with hand-crafted features, which indicates that
CNN could dramatically enhance the quality of features. In addi-
tion, after augmenting context features, we could obtain a large
improvement compared with the methods without contextual
information. Besides, within Fine-tune strategy, MCFN could also
increase the identification accuracy by 0.8%, 4.3% and 3.9% using
AlexNet, VGG16 and ResNet50 respectively compared to those
using without fine-tune strategy.

4.2. Training analysis

Our method achieves the best performance in our targeted
wild crop disease identification task. Additionally, we present the
variation of loss during the training process using deep learning
methods in Fig. 9. By comparing different loss curve, it could be
observed that MCFN fits the distribution of our dataset better,
which could obtain the lowest loss when reaching converge.
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Fig. 9. Classification losses of the different models during training.

Table 1
Validation accuracy (%) of different methods. The column ‘Accuracy’ is the
average classification accuracy with standard deviation over 10-folds cross
validation.
Method Feature extractor Fine-tune Accuracy

BP Hand-Crafted – 57.9 ± 2.45
SVM [32] Hand-Crafted – 50.8 ± 3.66
General CNN AlexNet [13] 72.6 ± 2.34
General CNN AlexNet [13] √ 77.5 ± 2.08
MCFN (Ours) AlexNet [13] 87.0 ± 1.77
MCFN (Ours) AlexNet [13] √ 87.8 ± 1.54
General CNN VGG16 [38] 75.3 ± 2.14
General CNN VGG16 [38] √ 78.7 ± 1.98
MCFN (Ours) VGG16 [38] 91.5 ± 1.43
MCFN (Ours) VGG16 [38] √ 95.8 ± 1.29
General CNN ResNet50 [11] 82.6 ± 1.35
General CNN ResNet50 [11] √ 84.8 ± 1.21
MCFN (Ours) ResNet50 [11] 93.6 ± 1.14
MCFN (Ours) ResNet50 [11] √ 97.5 ± 0.69

Fig. 10 shows the accuracy curves for each epoch during
training. (a) shows the curves of training from scratch, (b) shows
the curves of training by Fine-tune strategy. Compared with the
models training from scratch, Obviously, both training modes
show the similar trend, in which our MCFN gets a better accuracy
during training. Furthermore, the accuracy curve of models using
Fine-tune training mode could be trained dramatically faster than
those training from scratch. Only when the training continues
to iterate with more epochs, the gap between them start to
decrease.

4.3. Confusion matrix discussion

In order to analyze detailed crop disease identification re-
sults, we compare the confusion matrix of the category results
predicted by the MCFN and other CNN models (AlexNet, VGG16
and ResNet50). Due to the fact that we aim to recognize a large
number of categories of crop diseases, which are 77 types with
19 different crops, we may not visualize the confusion matrix of
these diseases in one single matrix. So, we present the confusion
matrixes for part of them. Fig. 11 shows the confusion matrixes
for part of crops’ diseases using our MCFN with Fine-tune strat-
egy. As it can be seen, MCFN could get an excellent identification
performance in almost every disease and the prediction accuracy
of most crop diseases are above 90%. Therefore, our MCFN is
capable of identifying various types of crop diseases in the wild.

4.4. Result visualization and discussion

Finally, we visualize some of test samples in our dataset and
their corresponding predicted diseases. As shown in Fig. 12, MCFN

could achieve crop disease identification under various wild sce-
narios, despite some intractable challenges such as illumination
(Fig. 12(b) and (c)) and noisy background (Fig. 12(a) and (d)).
Considering the comparative experimental results in Table 1, the
major reason for this excellent performance is that contextual
features, such as spatial and temporal information, are intuitively
important that could be a constraint to reduce the possibility of
prediction confusion.

4.5. Limitations and future work

Despite that we implement a novel MCFN method for crop
disease recognition in the field and achieve a successful per-
formance in our dataset, there are two limitations for future
study. Firstly, the problem of unbalanced data structure has not
been well solved. Specifically, due to the seasonal and regional
difficulty, it is almost impossible to collect a balanced dataset
for various categories of crop diseases. Besides, the occurrence
frequency of crop diseases might be also different in the practical
applications. Thus, an excellent recognition system is expected to
focus on identifying them based on practical crop disease occur-
rence regulation and introducing prior probability distribution for
these categories. Secondly, our system might pay attention on
identifying the class of crop disease rather than estimating the
severity of the identified crop disease which is also significant for
practical crop disease monitoring. Therefore, future work would
target at solving the problem of unbalanced captured dataset and
focus on more fine-grained identification of crop disease.

5. Conclusion

In this paper, we introduce an effective automatic crop dis-
ease recognition system deployed in agricultural IoT using Multi-
Context Fusion Network (MCFN) which explores the potential of
automatic crop disease identification in the wild through Convo-
lutional Neural Network (CNN) augmenting contextual features
as prior information. Specifically, MCFN encodes contextual in-
formation extracted during data collection, and adopts fully con-
nected layers to concatenate them with high-level visual features.
In order to validate the performance of our MCFN system in
crop disease identification task, a new domain specific dataset
is published in this paper, contains over 50,000 crop disease
samples with 77 categories, which covers almost all the common
diseases. Our designed comparative experiments have shown that
MCFN is powerful enough approach for crop disease identification
in the wild, which outperforms the popular CNN architectures
AlexNet and VGG16 by a large margin.
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Fig. 10. Accuracy curves during training.

Fig. 11. Confusion matrixes for two different crops’ diseases. Note that the x-axis represents the predicted disease ID and y-axis represents the actual disease ID.

Fig. 12. Visualization of crop disease images identified by MCFN visualization.
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