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Abstract—Accurate object pose estimation is crucial for em-
bodied intelligence tasks such as manipulation, grasping, and
human-robot interaction. However, due to the inherent char-
acteristics of articulated objects, such as kinematic constraints
and self-occlusion, pose estimation for articulated objects has
remained a significant challenge. To address these issues, this
paper proposes CAPED, an end-to-end robust Category-level
Articulated object Pose Estimator integrated differentiable ren-
dering. Given partial point cloud as input, CAPED outputs the
per-part 6D pose for articulation. Specifically, with the proposed
joint-centric modeling manner, CAPED firstly estimates the pose
for the free part. Afterward, we canonicalize the input point cloud
to estimate constrained parts’ poses by predicting the joint pa-
rameters and states as replacements. For further refinement, we
propose a differentiable rendering scheme for pose optimization.
Evaluations of the ArtImage and RobotArm datasets demonstrate
that CAPED exhibits outstanding effectiveness and generalization
in tasks ranging from synthetic data to real-world scenarios. We
will publicly release the code.

Index Terms—Articulated Objects, Pose Estimation, Differen-
tiable Rendering.

I. INTRODUCTION

Articulated objects [1]–[3], are ubiquitous in our daily lives,
ranging from small items like eyeglasses to large appliances
like dishwashers. Unlike rigid objects [4]–[7], which are
viewed as single entities in three-dimensional space, articu-
lated objects consist of multiple movable rigid parts connected
by joints, following specific motion structures. Accurate pose
estimation for both categories of objects is a critical task in
numerous computer vision and robotics applications, yet this
area has not been fully explored, particularly in applications
such as augmented reality [8]–[11], 3D scene understand-
ing [12]–[14], and robotic manipulation [15]–[20]. Despite
significant advancements in recent years, articulated object
pose estimation continues to face two major challenges:

(a)Self-occlusion. Previous methods [21], [22] lack robust-
ness in handling self-occlusion, particularly when larger parts
occlude smaller movable parts from some camera viewpoints.

(b)Inaccurate performance. Compared to 3D point clouds,
2D mask images offer higher information aggregation, en-
abling better capture of subtle pose variations during optimiza-
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tion. However, existing SOTA methods [21], [23], [24] tend to
neglect this advantage, limiting pose estimation performance.

In this paper, we introduce a novel method for articulated
object modeling, along with a customized refinement. To
address the first challenge, we propose joint-centric modeling.
This involves canonicalizing the pose of the free part by
transforming the input point cloud (PC) from camera space
to canonical space. In canonical space, we estimate the poses
of constrained parts by predicting joint parameters and states.
To tackle the second challenge, we implement a differentiable
rendering process. Specifically, we found that 2D mask images
play a crucial role. However, the conventional binarization
rendering function can’t be directly applied during training.
Our key contribution is making the rendering process end-to-
end trainable, integrating it seamlessly into the optimization
process. All in all, our key contributions are threefold:

• CAPED is a novel framework aiming to solve the prob-
lem of category-level articulated object 6D pose estima-
tion, where the pose estimation problem is cast into pose
optimization task in canonical space.

• To address challenges such as self-occlusion and pose
optimization, CAPED introduces modules such as joint-
centric pose modeling and differentiable rendering.

• The efficacy and robustness of CAPED are demonstrated
through evaluation on both point cloud observations and
RGB-D images, using datasets ranging from synthetic to
real-world scenarios.

II. METHODOLOGY

Problem Statement and Notations. Shortly, given the
partial observation P ∈ R3 with K rigid parts as in-
put, our CAPED takes per-part rotation, translation, and
scale {R(k), t(k),S(k)}Kk=1 as output, where {R(k)}Kk=1 =

{Rfree, {R(k)
cons}Kk=2}, {t(k)}Kk=1 = {tfree, {t(k)cons}Kk=2}.

Network Design. We adopt HS-Encoder [25] as backbone,
due to its ability to perceive both local and global geometric
information and its robustness to noise. All decoders are
composed of multiple one-dimensional convolution blocks.IC
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Fig. 1: The pipeline of our CAPED. Given the partial PC as input, our CAPED output per part pose for articulation.

A. Decoupled Pose Estimation
Inspired by GPV-Pose [26], the Rfree can be decomposed

into three direction vectors: x, y, and z, we predict two of them
via HS-Encoder [25], achieving lower complexity. An attempt
is made to estimate a confidence value for each vector [26]
to enhance the robustness during the recovery of the final 3D
rotation. Regarding the translation t, we firstly zero-center the
input point cloud P by reducing the center coordinate of point
cloud P̃ . For translation tfree, we predict the residual value t∗free
for better prediction through an MLP. The final translation of
free part tfree can be obtained by tfree = t∗free + P̃ . Finally,
the 6D pose of the free part is the constitution of rotation and
translation Tfree = {Rfree, tfree}.

B. Joint-centric Representation of Articulation
A common approach for articulated objects is part-centric

representation, treating them as combinations of rigid objects,
as widely used in previous works [21], [22]. While straightfor-
ward, this method neglects kinematic relationships and faces
challenges with self-occlusion. In contrast, we adopt a joint-
centric perspective to model articulated objects.

We categorize rigid parts of an articulated object into two
groups: free parts, which move arbitrarily in camera space, and
constrained parts, which move according to joint constraints.
With joint parameters, motion is determined by joint type.
Following A-NCSH [21], we consider: (1) Revolute joints,
allowing rotational motion, with joint state θr defined by
the rotation angle and parameters ϕr = (ur, qr), where ur

is the joint axis and qr is the pivot point. (2) Prismatic
joints, allowing translational motion, with joint state θp and
parameters ϕp = (up). Due to point cloud can provide both
a shape prior and a kinematic prior in canonical space [27],
we canonicalize the input point cloud as follows:

P̂(k) = (Tfree)
−1P(k) = (Rfree)

−1(P(k) − tfree) (1)

where P̂(k) denotes canonical point cloud. With the predicted
joint state and parameter in canonical space, the Rodrigues

formula is used to convert joint states into a matrix R
′(k)
cons for

the k-th part.

R
′(k)
cons =cosθ(k)

r U (k)
r + (1− cosθ(k)

r )·
(U (k)

r ·Q(k)
r )Q(k)

r + sinθ(k)
r (Q(k)

r )∧ (2)

where U
(k)
r denotes the normalized direction of the joint axis

u
(k)
r , Q(k)

r denotes a anti-symmetric matrix composed of pivot
point position q

(k)
r . Here the R

′(k)
cons is a matrix of size 3 × 4

and we stack it with the row [0, 0, 0, 1] appended at the end
to get relative pose T

′(k)
cons of k-th constrained part.

For prismatic joint, given predicted joint parameters (u
(k)
p )

and joint state θ(k)
p , we can also get relative pose for k-th

constrained part:

T
′(k)
cons =

[
I θ(k)

p u
(k)
p

0 1

]
(3)

where I indicates the identity matrix. Finally, we can calculate
the poses of constrained parts by T

(k)
cons = TfreeT

′(k)
cons . The total

articulated object poses for all the K parts can be represented
by a sequence of constrained part pose {T (k)

cons}Kk=2 and free
part pose Tfree = {Rfree, tfree}.

After obtaining the pose of free part and joint state, we use
Eq. 2 and Eq. 3 to conduct point cloud prior transformation
to get the transformed prior.

C. Differentiable Rendering

For further refinement, we employ a differentiable rendering
process. Specifically, we employ a renderer that back-project
the transformed prior of 3D object anchor into 2D mask
with the pre-defined orthographic camera setting and a point
rasterizer [28]. Here, the rendered mask is represented as
M0 ∈ RH×W , where H and W represent the height and
width of the mask, respectively. The projection binarization
process is typically formulated as Bi,j = 1{Pi,j ≥ T}.
Here, T is a hyperparameter (pixel threshold), (i, j) denotes
the coordinates of the mask array, and 1{·} is the indicator
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Fig. 2: Illustration of differentiable binarization and its
derivative. (a) Numerical comparison of standard Rendering
(SR) and differentiable Rendering (DR). (b) Derivative of ℓ+.
(c) Derivative of ℓ−.

function. However, this equation cannot be directly applied
during network training, as the standard binarization rendering
process is non-differentiable. To address this issue, we draw
inspiration from Differentiable Soft Quantization [29] and
approximate the rendering process with a step function. Thus,
the projection binarization can be re-formulated as:

B̂i,j =
1

1 + e−s·(Pi,j−σT )
(4)

where B̂ is the approximate binary map, T is the threshold.
s indicates the scaling factor, which is set to 50 empirically.
σ is the adaptive factor, inherently 1× 1 convolution. In this
way, the approximate binarization rendering function behaves
similarly to the standard binarization rendering function (see
Fig. 2) but is differentiable and thus can be optimized along
with the network in the training period.

The performance improvement attributed to differentiable
rendering (DR) can be explained through the backpropagation
of gradients. Consider the binary cross-entropy loss as an
example. We define the DR function as f(x) = 1/1 + e−sx,
where x = Pi,j − σT . Using this function, the losses ℓ+
for positive labels and ℓ− for negative labels can be readily
derived. By applying the chain rule, the derivatives of these
losses can be computed. The loss functions and their partial
derivatives for positive labels are provided in Eq. 5, while
those for negative labels are shown in Eq. 6.

ℓ+ = − log(0− 1

1 + e−sx
),

∂ℓ+
∂x

=
−s · e−s·x

1 + e−s·x (5)

ℓ− = − log(1− 1

1 + e−sx
),

∂ℓ−
∂x

=
s

1 + e−s·x (6)

The derivatives of ℓ+ and ℓ− are also shown in Fig. 2.
We can perceive from the differential that (1) The gradient is
augmented by the amplifying factor s; (2) The amplification of
gradient is significant for most of the wrongly predicted region
(x < 0 for ℓ+; x > 0 for ℓ−), thus facilitating the optimization
and helping to produce more distinctive predictions. Moreover,
as x = Pi,j − σT , the gradient of P is affected and rescaled
between the foreground and the background by T .

D. Optimization and Inference
Loss Functions. The loss function consists of three parts

1) for rotation loss ℓrot, translation loss ℓtrans, joint state loss
ℓsta and scale loss ℓscl, we use ℓ1 loss; 2) for joint parameters

loss ℓjnt, we use ℓ2 loss. 3) For rendered mask loss ℓdiff , we
use pixel-wise loss from Eq. 5 and Eq. 6. Finally, the overall
loss function can be written as: L = λ1ℓrot + λ2ℓtrans +
λ3ℓsta+λ4ℓscl+λ5ℓjnt+λ6ℓdiff , where λ1, λ2, λ3, λ4, λ5, λ6

are 5.0, 5.0, 5.0, 3.0, 1.0, 1.0, empirically.
Inference. During inference, our CAPED directly outputs

the pose of free part, scale, joint state and parameters. We
apply the effective Rodrigues Procession to obtain constrained
part pose without extra time-consuming post-process [21].

III. EXPERIMENTS

A. Experimental Setting

We evaluate our CAPED framework on synthetic dataset
ArtImage [23] and real dataset RobotArm [30]. ArtImage
contains four categories with evolute joint: Laptop, Eyeglasses,
Dishwasher, and Scissors; one category drawer with prismatic
joint. To validate the generality of our method in real-world
scenarios, we also train and test on the 7-part RobotArm
dataset. A-NCSH [21], OMAD [23] and ContactArt [24] are
the baselines. For validation, we adopt degree error (◦) for 3D
rotation, distance error (m) for 3D translation, 3D IOU (%) for
scale [21]. We also provide joint state metric since we use the
joint-centric pose modeling method. For part-centric modeling,
the joint state can be calculated from the poses between the
parts [27] according to the kinematic relationship. We adopt a
ranger optimizer, the number of total training epochs is 200,
batch size is 16. All the experiments are implemented on an
NVIDIA GeForce RTX 3090 GPU with 24GB memory.
B. Comparison with the SOTA Methods

Synthetic Dataset. We report the results of CAPED on
ArtImage in Tab. I. Compared to the classical methods, we
get the best pose estimation result on category laptop, with
3.5◦,4.0◦ on rotation error. This can be explained by the pro-
posed differentiable rendering strategy can outperform objects
with similar size and shape at part level. For category Eye-
glasses, our method achieves excellent performance with only
0.038m, 0.098m, and 0.089m on translation error, which can
be attributed to the framework’s accurate estimation of state.
Moving to 3D IoU metric, we see a significant improvement
in predicting scale of each part compared to the baselines.
Regarding joint state error, we achieve 2.0◦ on both laptop
and diashwasher, showing direct regression in joint-centric
perspective is more effective than calculation in part-centric
perspective. Qualitative results are illustrated in Fig.3 (left).

Real-world Scenarios. To assess the generalization capa-
bility of our CAPED, we conducted experiments on real-world
scenarios using the 7-part RobotArm dataset. The quantitative
results are presented in Tab. II, achieving 16.7◦ on rotation
error and 0.312m on translation error for the last part. It
shows that our method performs well on objects with diverse
structures. Qualitative results are illustrated in Fig.3 (right).

C. Abalation Study

Differentiable Rendering Strategy. We conduct an abla-
tion study to explore the effect of our differentiable rendering.
As shown in Tab. III (Index I-II), rotation error decreased by
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Category Method Per-part Pose Joint State ↓Rotation Error (◦) ↓ Translation Error (m) ↓ 3D IOU (%) ↑

Laptop

A-NCSH [21] 5.3, 5.4 0.054, 0.043 56.7, 40.2 3.5◦
OMAD [23] 5.4, 4.3 0.062, 0.061 43.5, 24.1 3.3◦
ContactArt [24] 4.9, 4.7 0.053, 0.066 64.6, 50.4 5.8◦
CAPED 3.6, 3.8 0.063, 0.069 88.4, 88.0 2.0◦

Eyeglasses

A-NCSH [21] 3.7, 22.3, 23.2 0.049, 0.313, 0.324 52.5, 40.2, 39.6 12.8◦, 14.2◦
OMAD [23] 4.9, 7.5, 7.5 0.062, 0.103, 0.324 22.8, 20.5, 21.4 4.9◦, 5.2◦
ContactArt [24] 4.1, 6.2, 6.0 0.047, 0.095, 0.091 58.6, 46.5, 51.7 5.6, 5.5◦
CAPED 2.9, 6.9, 5.7 0.039, 0.097, 0.085 92.0, 82.4, 84.3 5.0◦, 4.1◦

Dishwasher

A-NCSH [21] 4.0, 4.8 0.059, 0.123 84.3, 56.2 3.8◦
OMAD [23] 6.0, 6.2 0.104, 0.142 66.5, 38.9 3.7◦
ContactArt [24] 3.9, 4.3 0.055, 0.079 89.3, 67.6 6.0◦
CAPED 2.6, 2.9 0.050, 0.083 89.2, 80.2 2.0◦

Scissors

A-NCSH [21] 2,0, 2.9 0.035, 0.025 46.5, 44.8 4.4◦
OMAD [23] 3.9, 3.4 0.048, 0.039 35.6, 34.5 3.2◦
ContactArt [24] 2.2, 2.6 0.031, 0.042 40.9, 46.3 4.2◦
CAPED 4.5, 4.6 0.045, 0.097 74.3, 68.9 2.5◦

Drawer

A-NCSH [21] 2.8, 3.5, 3.9, 2.9 0.045, 0.155, 0.157, 0.075 90.2, 81.5, 78.4, 82.7 0.381m, 0.450m, 0.412m
OMAD [23] 4.4, 4.4, 4.4, 4.4 0.111, 0.143, 0.144, 0.115 75.8, 73.4, 70.2, 71.3 0.110m, 0.111m, 0.092m
ContactArt [24] 3.5, 3.5, 3.5, 3.5 0.061, 0.112, 0.121, 0.104 84.8, 78.6, 79.0, 81.2 0.076m, 0.074m, 0.064m
CAPED 1.8, 1.8, 1.8, 1.8 0.043, 0.088, 0.094, 0.082 91.2, 85.3, 85.3, 86.5 0.075m, 0.076m, 0.050m

TABLE I: Comparison with state-of-the-arts on the ArtImage dataset. We validate our CAPED on categories Laptop,
Eyeglasses, Dishwasher, Scissors and Drawer. ↓ means the lower the better and ↑ means the upper the better.

Fig. 3: Qualitative results. The left is the synthetic dataset (ArtImage), and the right is the real-world scenario (RobotArm).

Per-part Rotation Error (◦)
Part ID 1 2 3 4 5 6 7

A-NCSH [21] 7.8 7.9 10.3 10.5 11.2 16.4 23.5
CAPED 0.08 6.2 7.3 7.6 8.2 12.3 16.7

Per-part Translation Error (m)
Part ID 1 2 3 4 5 6 7

A-NCSH [21] 0.012 0.044 0.067 0.066 0.079 0.236 0.403
CAPED 0.014 0.024 0.048 0.052 0.126 0.128 0.312

TABLE II: Pose estimation results on RobotArm dataset.

16% and translation error decreased by 17%, proving that 2D
Mask help the network acquire more effective features.

Self-Occlusion Analysis. To further investigate the robust-
ness under self-occlusion of CAPED, we split the test samples
of category Drawer into three subsets based on occlusion level.
Thanks to our joint-centric method, rotation and translation
errors are maintained stable with an increasing occlusion level.
The results shown in Tab. III (Index III-V) show the effective-
ness of CAPED in addressing the self-occlusion problem.

IV. CONCLUSION

In this paper, we introduce CAPED, a joint-centric approach
for category-level articulation pose estimation that addresses
self-occlusion via kinematic constraints. To refine pose predic-
tions, we implement a differentiable binarization and rendering

Index Render Rotation Error (◦) Translation Error (m)

I - 1.8 0.092
II (Ours) ✓ 1.5 0.076

Index Occlusion Level (Visibility) Rotation Error (◦) Translation Error (m)

III 0%-40% 1.5 0.057
IV 40%-80% 1.6 0.062
V 80%-100% 1.6 0.095

TABLE III: Ablation study results. The average Rotation (◦)
and Translation (m) of all parts are reported as the metrics.
Note that experiments are conducted on the category Drawer.

strategy. Experiments show our method achieves state-of-the-
art performance on the synthetic ArtImage dataset and strong
generalization on real-world datasets like RobotArm.
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