
ww.sciencedirect.com

b i o s y s t em s e ng i n e e r i n g 1 8 7 ( 2 0 1 9 ) 3 9e5 2
Available online at w
ScienceDirect

journal homepage: www.elsevier .com/ locate/ issn/15375110
Research Paper
A coarse-to-fine network for aphid recognition and
detection in the field
Rui Li a,b, Rujing Wang a,*, Chengjun Xie a,**, Liu Liu a,b,***, Jie Zhang a,
Fangyuan Wang a,b, Wancai Liu c

a Institute of Intelligent Machines, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei 230031,

China
b University of Science and Technology of China, Hefei 230026, China
c National Agro-Tech Extension and Service Center, Beijing 100125, China
a r t i c l e i n f o

Article history:

Received 9 April 2019

Received in revised form

20 August 2019

Accepted 22 August 2019

Keywords:

Aphid Detection

Aphid Recognition

Convolutional Neural Network

Coarse-to-Fine Network
* Corresponding author.
** Corresponding author.
*** Corresponding author. Institute of Intell
230031, China.

E-mail addresses: rjwang@iim.ac.cn (R. W
https://doi.org/10.1016/j.biosystemseng.2019
1537-5110/© 2019 IAgrE. Published by Elsevie
In agriculture, aphids are one of the most destructive pests, responsible for major re-

ductions in wheat, corn and rape production leading to significant economic losses.

However, manual pest recognition approaches are often time-consuming and laborious for

Integrated Pest Management (IPM). In addition, the existing pest detection methods based

on Convolutional Neural Network (CNN) are not satisfactory for small aphid recognition

and detection in the field because aphids are tiny and often in dense distributions. In this

work, a two-stage aphid detector named Coarse-to-Fine Network (CFN) is proposed to

address these problems. The key idea of our method is to develop a Coarse Convolutional

Neural Network (CCNN) for aphid clique searching as well as a Fine Convolutional Neural

Network (FCNN) for refining the regions of aphids in the clique. Specifically, The CCNN

detects approximately all the object regions from natural aphid images with various aphid

distributions including dense aphid cliques and sparse aphid objects, in which an

Improved Non-Maximum Suppression (INMS) strategy is proposed to eliminate over-

lapping regions. Then, the FCNN further refines the detected aphid regions from the CCNN.

The final recognition and detection result would be obtained by combining the outputs

from CCNN and FCNN together. Experiments on our dataset show that our CFN achieves an

aphid detection performance of 76.8% Average Precision (AP), which improves 20.9%,

18%,13.7% and 12.5% compared to four state-of-the-art approaches.
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Nomenclature

Abbreviations

AP Average Precision

CCNN Coarse Convolutional Neural Network

CFN Coarse-to-Fine Network

CNN Convolutional Neural Network

DSSD Deconvolutional Single Shot Detector

Faster ReCNN Faster Regions with Convolutional

Neural Network

FCNN Fine Convolutional Neural Network

FPN Feature Pyramid Networks

FPS Frames Per Second

INMS Improved Non-Maximum Suppression

IPM Integrated Pest Management

mAP mean Average Precision

NMS Non-Maximum Suppression

PR Precision-Recall

ReFCN Region-Fully Convolutional Network

RPN Region Proposal Network

ReLU Rectified Linear Unit

SSD Single Shot Detector

YOLO You Only Look Once
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1. Introduction

Aphids are one of the prime pests in wheat, rape and corn,

where they feed on the sap of stem and leaf. In agriculture,

aphids can cause major damage in fields and result in signif-

icant crop yield losses. Since the aphids are small, manual

recognition and counting are very time-consuming, labour

intensive and inefficient, which might affect the investigation

efficiency of Integrated Pest Management (IPM) in the field.

Therefore, automatic aphid recognition and detection in the

field can reduce labour requirements and improve work

efficiency.

With the rapid development of computer vision technol-

ogy, a lot of research on pest recognition and detection has

been undertaken. Tian, Chen, Dong, and Li (2016) used a

fusion method of infrared sensor and machine vision for pest

identification and counting in orchard ecosystems that ach-

ieved an accuracy of 80%. Deng, Wang, Han, and Yu (2018)

proposed a pest image detection and recognition method

based on bio-inspired techniques to obtain categories and

number of the pests. Wen, Guyer, & Li (2009) used a local

feature method for orchard insect identification and classifi-

cation. Xie, Zhang, Li, Li, Hong, & Xia (2015) proposed an

automatic classification method for in-field crop insect iden-

tification using multiple-task sparse representation and

multiple-kernel learning. Faithpraise and Chatwin (2013)

applied the correspondence filter for the segmentation of

paddy field pests and classified the pests using K-Means

method. Besides, other classifiers have also been employed for

insect recognition such as Support Vector Machine (Liu, Chen,

Wu, Sun, Guo, & Zhu, 2016b), (Ebrahimi, Khoshtaghaza,

Minaei, & Jamshidi, 2017) Random Forest (Yang, Liu, Xing,
Qiao, Wang, & Gao, 2010, pp. 545e548), (Yuan & Hu, 2016)

and AdaBoost (Yao, Xian, Liu, Yang, Diao, & Tanget, 2014).

However, though all the above methods could achieve satis-

factory performance, they aim to detect pests under simple

background conditions rather than with the complex back-

grounds typical of the field environment. In practical appli-

cation, the dense distribution of the pest, complexity of image

background, illumination, scales and different attitudes are

the major challenges in pest recognition and detection.

In order to address these issues, many researchers have

focused on developing novel methods. Recent advances in

deep learning techniques based on Convolutional Neural

Network (CNN) (Krizhevsky, Sutskever, & Hinton, 2012;

Lecun, Bengio, & Hinton, 2015) have led to significantly

promising progress in the field of object recognition and

detection under natural conditions. In contrast to conven-

tional machine learning methods, CNN can avoid the use of

hand-crafted feature extractors and automatically learn the

appropriate features from the training subset. Therefore,

most of research has extracted pest features by using CNN

and achieved a satisfactory recognition and detection accu-

racy. Wang and Zhang (2018) applied the deep belief network

to predict the large-scale occurrence of cotton pests by using

cotton's growth environment information, but the growth

environment information was easily disturbed by noise and

had uncertainty, which directly affected the prediction re-

sults. Ding and Taylor (2016) located pest regions by using

the sliding window on feature maps extracted by CNN, and

they achieved precision-recall rate of 93%, higher than Log-

Reg algorithm (Hilbe J M, 2009; Liu, Gao and Yang, 2016c)

which used GrabCut, a variant of CNN, to compute a saliency

map and detected pest. Furthermore, there are many excel-

lent CNN-based object detection methods like Faster-RCNN

(Ren, He, Girshick, & Sun, 2015), SSD (Liu, Anguelov, Erhan,

Szegedy, Reed, Fu and Berg, 2016a), YOLO (Redmon,

Divvala, Girshick, & Farhadi, 2016, pp. 779e788),

ReFCN(Dai, Li, He, & Sun, 2016), Feature Pyramid Network

(FPN) (Lin, Dollar, Girshick, He, & Hariharan, 2017, pp.

936e944), DSSD (Fu, Liu and Ranga, 2017), and other extended

variants of these networks (Cai & Vasconcelos, 2018, pp.

6154e6162; Chen, Li, Sakaridis, & Dai, 2018, pp. 3339e3348).

Faster RCNN, SSD and YOLO are effective object detectors

towards general object detection in a specific field, but

intractable for use in practical detection of tiny objects.

Although these methods like FPN could achieve satisfied

performance, they cannot accurately detect tiny pests that

are densely distributed.

Different from other common pests in the field, aphids are

often distributed in dense regions (Fig. 1(a)) and are always

tiny in static images as shown in Fig. 1(b). Specifically:

1) The intuitive features of aphids in dense regions are

easily confused with complex background in field

environments.

2) Features of aphids like scale invariance, rotation

invariance, translation invariance are too weak and

insensitive to be recognised.

3) Tiny sizes might weaken the features of aphids in

feature maps because down-sampling operations can

lead to information loss. Thus, the aphid detection in

https://doi.org/10.1016/j.biosystemseng.2019.08.013
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Fig. 1 e (a) Features of aphids in dense distributions are too weak and insensitive to be recognised. (b) The sizes of aphids

would be at most 1.5% of the whole image size, which may be smaller and more insensitive after each pooling layer of CNN.
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the field might be significantly affected by their

distributions.

In Fig. 2, we illustrate some of the aphid detection visual-

isation performed by Feature Pyramid Network (FPN) (Lin

et al., 2017, pp. 936e944). As shown, it is obvious that

densely distributed aphids may be more difficult to detect

than well-separated aphids. When tiny aphids gather in a

clique, the high density of aphids could raise the difficulty to

detect them by confusing their features with those of the

adjacent aphids. In this case, a potential way to alleviate this
Fig. 2 e (a) the result for well-separated aphids (b) the result for

detected by using Feature Pyramid Network. The blue boxes are

aphids are more difficult to detect than well-separated aphids.

legend, the reader is referred to the Web version of this article.
challenge in natural aphid detection is to localise the regions

of aphid cliques containing a large number of aphids and then

refine them into single objects. Therefore, in this paper, we

have developed a novel architecture named Coarse-to-Fine

Network (CFN), which can improve the detection accuracy of

aphids in dense distribution regions. The key idea of our

method is to develop a Coarse Convolutional Neural Network

(CCNN) to search for aphid cliques as well as a Fine Con-

volutional Neural Network (FCNN) for refining the regions of

aphids in the clique. The final output is obtained by combining

the final detection results from CCNN and FCNN.
dense distribution aphids. The red boxes are the results

the results miss detected. It shows that densely distributed

(For interpretation of the references to colour in this figure

)
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2. Materials and methods

2.1. Image acquisition and preprocessing

In this paper, we select 2200 aphid images, which are collected

under the field environment. The resolution of these images

taken by CCD camera with 4 mm focal length and an aperture

of f/3.3 is 1440 � 1080 pixels. We randomly split the dataset

into training subset and validation subset at ratio of 9:1. The

statistics of these two subsets are illustrated in Table 1.

After image acquisition, we label these images with an-

notations by using LabelImg (https://tzutalin.github.io/

labelImg/). LabelImg is a graphical image annotation tool,

which is written in Python and uses Qt for its graphical

interface. The regions of object are selected to annotate the

rectangular boxes and class name by using mouse. The rect-

angular boxes are described by two pairs of coordinates: top-

left and bottom-right point. Annotations are saved as XML

files in PASCAL VOC-style. Specifically, aphids are firstly an-

notated with dense distribution regions and aphids are then

labelled by agricultural experts to guarantee the accuracy of

these annotations (Fig. 3 (a)). Then the dense distribution re-

gions are cut into different blocks, and the aphids would be

annotated with bounding boxes, as shown in Fig. 3(b).

Before training our model, some data augmentation

methods are applied to expand the amount of data. Firstly,

given the change of the rotation invariability and changes of

shooting angle, the original images are rotated with un-

changing image resolution. Then we vertically and horizon-

tally flip the training subset to obtain the extra 2-fold images.

2.2. Coarse-to-fine network (CFN) architecture

To address the issue of aphid detection in dense distributions

in the field, we describe here our proposed CFN architecture

(Fig. 4).

In the first stage, a CCNN architecture is proposed to detect

dense regions of aphids (which we call cliques). The input

image taken in the field environment is fed into a CNN back-

bone to generate feature maps, and then we use region pro-

posal network (RPN) (Ren et al., 2015) module to predict the

clique regions and well-separated aphids in sparse areas.

Finally, a new optimisationmethod, improved non-maximum

suppression (INMS), is proposed to eliminate overlapping

bounding boxes of aphids in dense distribution regions.

Secondly, the FCNN is used to refine the regions of aphids

in the clique. After CCNN, the aphids are greatly enlarged in

the image. Therefore, it is easy to recognise and detect aphids.

For improving the speed of recognition and detection, we

adopt a one-stage object detection architecture in FCNN.
Table 1 e Statistics on training and validation subsets of our d

Crop name Training

#images #objects #ima

Wheat 900 16144 10

Rape 450 11375 50

Corn 630 12841 70

Total 1980 40360 22
Finally, the results from CCNN and FCNN are combined as

the final aphid detection output.

2.2.1. Convolutional neural network
Our architecture adopts CNN for automatic feature extraction,

mainly consisting of four parts: convolutional layers, batch

normalisation layer, activation function and pooling layers. In

general, images are fed into convolutional layers for obtaining

convolution features and then via pooling layers for down-

sampling. In this paper, different combinations of these

layers are applied for extracting convolutional features, and a

feature map is obtained at the end.

Convolutional layer: The convolutional layer is an impor-

tant part of CNN and the convolutional features are extracted

through some slide of the convolutional kernels on the image.

Convolution is a linear operation and can be defined as:

ai;j ¼
XSh
m¼0

XSw
n¼0

wm;nxiþm;jþn

where wm;n is the weight of convolutional kernel

at m and n; xi;j is the pixel value of image at position i and j;

Sh and Sw are the height and width of convolutional kernel.

The image is a two-dimensional discrete signal, so the

process of convolution is to use the convolution kernels to

slide on the image,multiply the value of the image pixel by the

weight on the convolution kernel, and then add the product

result to the pixel value of the corresponding position on the

feature map, as shown in Fig. 5.

Batch normalisation layer: During the training phase,

the distribution of output from the convolutional layer

would vary with large number of learnable parameters,

which result in slower convergence. Therefore, it is diffi-

cult for the CNN to train a set of parameters with optimal

performance. As the depth increases, the training process

might become increasingly difficult and slow because of

gradient dispersion problem. In addition, larger learning

rates cannot be used in CNN. For improving the speed of

convergence and alleviating the gradient dispersion of the

network, batch normalisation has been introduced (Ioffe &

Szegedy, 2015). The batch normalisation function is

defined as:

yi ¼ xi � mffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ ε

p gþ b

where x is the mini-batch, m ¼ 1
m

Pm
i¼1xi represents the mean

deviation and s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

Pm
i¼1ðXi � mÞ2

q
is the standard deviation of

the mini-batch, of which m is the number of training images

in themini-batch, g; ε is a small constant which prevents the

divisor equalling zero.
ataset for each crop.

Validation All

ges #objects #images #objects

0 2401 1000 18545

1049 500 12424

1614 700 14455

0 5064 2200 45424

https://tzutalin.github.io/labelImg/
https://tzutalin.github.io/labelImg/
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Fig. 3 e (a) Training set is annotated with aphids and dense distribution regions. (b) Aphids are annotated in dense

distribution regions.

Fig. 4 e Coarse-to-Fine Network (CFN) structure. The CFN structure mainly includes coarse network and fine network, which

are responsible for detecting clique regions and aphids in the cliques respectively.
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There are some advantages of using a batch normalisation

layer:

(1) Larger learning rates can be used in the CNN to learn

the best parameters.

(2) It can improve the speed of convergence and allevi-

ating the gradient dispersion of the CNN.

Activation function: Most of the training datasets are non-

linearly separable (Huang, Xu, Schuurmans, & Szepesvari,

2016), in order to improve classification accuracy, and the

activation functions are introduced to get non-linear factors.

The activation function is important for CNN to learn the non-
linear complex functional mapping between inputs and

response. Their main purpose is to convert an input signal in

convolutional neural network to an output signal. That output

signal is used as an input in the next layer. To avoid vanishing

gradient and sparsity, the rectified linear unit (ReLU) is usually

used as activation function in CNN. The function of ReLU is

defined as:

ReLUðxÞ¼
8<
:

x x>0
0 x � 0

When x > 0, the gradient is always 1. There is no gradient

dissipation that could contribute to the effectiveness of

https://doi.org/10.1016/j.biosystemseng.2019.08.013
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Fig. 5 e Process of convolution. The convolutional feature map is obtained by multiplying the image pixels by the weights

on the convolution kernel.
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convergence. When x < 0, the output of this layer is 0, which

increases the sparsity of the network. Much sparser features

would bring up more representative ability and stronger

generalisation of the network. Therefore, ReLU can reduce

risk of the vanishing gradient and improve the speed of

training.

Pooling layer: Pooling layers are commonly used in CNN, as

they can reduce the data dimensionality and improve the

computational efficiency. Max pooling is used in this paper,

which extracts maximum value within a k*k neighbourhood

(Fig. 6).

2.2.2. Coarse Convolutional Neural Network
The state-of-the-art object detectors can be divided into two-

stage approaches and one-stage approaches. The two-stage

approaches have been achieving the highest accuracy, espe-

cially in tiny and multi-scale object recognition and detection

(Zhang, Wen, Bian, Lei, & Li, 2018, pp. 4203e4212). Aphids are

tiny pests and their scale is much smaller than the dense

distribution regions. Therefore, in order to better detect dense

distribution regions and aphids at the same time, two-stage

object detection architecture is used in CCNN. In the first
Fig. 6 e Max pooling with 2 £ 2 filters and stride 2.
stage, the feature maps are extracted by using CNN. In the

second stage, RPN is used for producing a large list of candi-

date regions, which is proposal-free.

Region Proposal Network: RPN takes feature maps from

CNN as an input and outputs probability of dense regions

and well-separated aphids, as shown in Fig. 7. There is a

sliding window on the feature map, and the dense regions

and aphids are all obtained vis the sliding window, whose

size is 6 � 6 in this paper. A low dimensional vector is

generated by using the sliding window, which is then fed to

classification layer and box-regression layer. Several dense

distribution regions and aphids are predicted by location of

sliding window. Generally, the number of dense distribution

regions and aphids for each sliding window is donated as l.

Therefore, 2l scores including foreground and background

of each region and 4l coordinates (coordinates of points in

upper left and lower right) of l boxes are output by box-

classification layer and box-regression layer.

Improved Non-Maximum Suppression (INMS): The

target regions and their corresponding category scores are

obtained after RPN. However, the sliding windows of RPN

can cause many target regions that are largely intersected

with other regions. In order to overcome this obstacle, non-

maximum suppression (NMS) (Neubeck & Gool, 2006, pp.

850e855) is chosen to select the highest scores in those

regions, but this still has some limitations as shown in

Fig. 8. The problem is that double boxes lie in the same

region after using NMS, which may cause some aphids to be

repeatedly detected, seriously affecting the counting accu-

racy. To solve the issue of overlapping boxes, we propose a

variant of NMS named Improved Non-Maximum Suppres-

sion (INMS), whose process is shown in Algorithm 1.

https://doi.org/10.1016/j.biosystemseng.2019.08.013
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Algorithm 1.
2.2.3. Fine Convolutional Neural Network
After aphid clique searching, we could re-scale the dense re-

gions into a higher resolution. Then the sizes of aphids are

enlarged so they could be detected better in our FCNN.

Inspired by the one-stage detection approach such as YOLO

(Redmon et al., 2016, pp. 779e788), DSSD (Fu, Liu, Ranga, &

Tyagi, 2017), our FCNN structure is a highly efficient one-

stage detection framework, it adopts regression method to
Fig. 7 e Region Proposal Network (RPN) Framework. The trainin

these regions. The implementation process is indicated as righ
recognise objects and locate their position. The FCNN in-

corporates the idea of multi-scale detection and the tiny ob-

ject detection accuracy has been significantly improved.

Inspired by the residual network (He, Zhang, Ren, Sun, 2016),

some residual blocks are used in CNN, which is called

Darknet-53 (Redmon, Farhadi, 2018). FCNN is a structure

based onYOLO.Darknet-53 has 5 pooling layers and the size of

the image is reduced by one-half after passing one pooling

layer, so the image size is better set to a multiple of 32.

Through our experiment, the image is resized to 608 � 608,

which not only has a high computational efficiency but also

has a better detection accuracy (Table 2). The experimental

results show that the bigger size cannot provide better

detection accuracy. This is because, when the image scale

reaches a certain size, the sharpness of image becomes blur-

red, making it difficult to distinguish the aphids from the

background. As shown in Fig. 9, the detecting process of FCNN

is as follows:

1) The original image is firstly resized to 608 � 608, and

then the image is divided into S � S cells, in this paper

we set S to 14.

2) The feature maps are extracted from Darknet-53.

3) Logistic Regression is used to predict the class, bound-

ing box and the probability value of the object.

4) Some bounding boxes with low confidence are filtered

out by a threshold.

5) The final bounding boxes are obtained by using NMS.

2.3. Evaluation metrics

For validating the performance of our model in detecting

aphids, we select Precision-Recall (PR) curve and Average

Precision (AP) (Zhang & Zhang, 2016) as the evaluation

metrics.
g stage is shown in the left part before selective search of

t dotted box.

https://doi.org/10.1016/j.biosystemseng.2019.08.013
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Fig. 8 e The problem of NMS: there are some overlapping bounding box after NMS. The chocolate box is the dense region

and the yellow box is a well-separated aphid. It shows that the dense distribution regions boxes contain the other dense

regions and some well-separated aphids. (For interpretation of the references to colour in this figure legend, the reader is

referred to the Web version of this article.)
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The Precision-Recall (PR) curve represents the balance be-

tween reducing false positives and misdetections. We used

area under precision-recall curve to precisely measure the

performance of the method, The Precision-Recall (PR) is

calculated by:

PrecisionðcÞ¼ TPðcÞ
TPðcÞ þ FPðcÞ; RecallðcÞ ¼

TPðcÞ
TPðcÞ þ FNðcÞ

where cdenotes the class, inwhichTP, FP and FN representTrue

Positive, False Positive and False Negative samples respectively,

so the Precision measures the samples that are incorrectly

detected while Recall measures the misdetection samples.

AP is updated for combining localisation and classification

tasks together. Given an IoU threshold, the AP is defined as the

area under Precision-Recall:

AP¼
Z

Precision d Recall

in which the Precision measures the samples that are incor-

rectly detected and Recall measures themisdetection samples.
Table 2 e Detection results training time and AP value (%)
of FCNN. The number of dense region images is 7120,
During the training phase, the image mini-batch size is
set to 2, learning rate is initialised to 0.001 and the
number of training iterations is 30000.

Image Size Training time AP

576 � 576 1 h 45 min 88.7%

608 � 608 1 h 52 min 90.9%

640 � 640 2 h 0 min 90.8%

672 � 672 2 h 10 min 90.6%
MeanAverage Precision (mAP) is themeanofAverage Precision

(AP) value among classes and is obtained by taking mean:

mAP¼ 1
jCj

X
c2C

APðcÞ

where c denotes the class.

In order to accurately evaluate the model of FCNN, Frames

Per Second (FPS) is used as metric evaluation for computa-

tional efficiency, defined as:

FPS¼Fn
T

where Fn is the total number of frames during the time of T.
3. Experiment and discussion

3.1. Experimental settings

In this paper, the proposed method and contrast method are

all performed under PyCharm platform. Caffe2 (Jia,

Shelhamer, Donahue, Karayev.et al., 2014, pp. 675e678) with

Python API 2.7 is used in our experiment and run on 12 GB T

P40 GPU and two Intel Xeon E5-2600V3/V4s running 64-bit

Ubuntu 16.04 LTS. All models are trained by Stochastic

Gradient Descent (SGD) over 2 GPUs with a total of 2 images

per mini-batch. We initialise the learning rate to 0.001 and the

learning rate will be divided by 10 per 1000 iterations. We are

going to consider two different CNN architectures as our prior

CNN backbones for feature extraction which are ResNet-50

(He et al., 2016) and Darknet-53 (Redmon, Farhadi, 2018). The

https://doi.org/10.1016/j.biosystemseng.2019.08.013
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Fig. 9 e Fine Convolutional Neural Network (FCNN) structure. Multi-scale detection is used in FCNN structure. The high-level

feature map is used to detect bigger aphids and the low-level feature map is used to detect smaller aphids.
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input image resolution is 2160 � 1620. In addition, we adopt

transfer learning strategy to initialise the parameters of

backbone CNN from that pre-trained on ImageNet dataset and

fine-tune them during training in our task.

3.2. CCNN results

Three state-of-the-art two-stage methods are used in CCNN

architecture. Table 3 presents the detection results of dense

distribution regions and aphids not in these regions using

these methods. The Faster-RCNN-INMS, ReFCNeINMS and

FPN-INMS are the methods using INMS, the others are ap-

proaches without INMS. The best result is marked with the

bold font. Table 3 shows that compared with the methods

without INMS, themethods using INMS have higher detection

accuracy. The experiment shows that the INMS method can

improve the detection rate. Among all of the approaches, the

best detection performance occurs in FPN-INMS using ResNet-

50 as backbone, which achieves mAP with 71%. Compared

with Faster-RCNN(Ren et al., 2015) and ReFCN(Dai et al., 2016),

FPN (Lin et al., 2017, pp. 936e944) is a feature pyramid network

structure, so it improves the detection rate of aphids in sparse

distribution areaswhile ensuring the accuracy of dense region

detection. It is noteworthy that CCNN is used to detect “dense

regions” not the aphids. Table 3 shows that the dense regions

have higher detection accuracy than separated aphids,

because aphids are much smaller than dense regions. Very

small size will weaken the features of aphids in feature maps

because max pooling can lead to information loss. As Fig. 10

shows, compared with the detection results when not using

INMS, INMS could effectively eliminate overlapping regions.
Table 3 e Detection Results AP value (%) over IoU 0.5 of CCNN.

Method Well-separated aphids (AP)

Faster-RCNN 59.2%

Faster-RCNN-INMS 59.7%

ReFCN 62.1%

R-FCN-INMS 62.4%

FPN 66.5%

FPN-INMS 66.8%
3.3. FCNN results

The dense distribution regions are cropped and rescaled after

CCNN, the proportion of aphids in the new distribution region

image are significantly enlarged compared with the original

image. Therefore, the problem of tiny pest detection can be

solved.

Five state-of-the-art methods were studied and the results

are shown in Table 4. Compared with other four methods, we

firstly observe that FCNN has the highest computational effi-

ciency. Though FCNN gives a lower AP value than FPN, it could

achieve a higher speed (four times faster than FPN). Thus, we

select FCNN as our Fine Network. The results for FCNN are

illustrated in Fig. 11.

3.4. CFN results

By combining the results from CCNN and FCNN, we could

obtain the detection result of CFN. Table 5 presents the final

detection results for CFN with approaches of Faster-RCNN

(Ren et al., 2015), DSSD (Fu, Liu and Ranga, 2017), ReFCN(Dai

et al., 2016), FPN(Lin et al., 2017, pp. 936e944) using ResNet-

50 as backbone and an input resolution of image of

2160 � 1620. The best results are marked in bold font. Among

all of the approaches, the best detection performance occurs

in CFN using FPN as Coarse Network and FCNN as Fine

Network, which achieves AP with 76.8%. The CFN using

Faster-RCNN as Coarse Network and DSSD as Fine Network

achieves AP with 66.8%, which outperforms FPN by 2.5% AP.

FPN and FCNN are all multi-scale detection structures and,

therefore, they have more accurate recognition and detection
dense distribution regions (AP) mAP

64.1% 61.7%

64.9% 62.3%

68.9% 65.5%

69.5% 66.0%

74.6% 70.6%

75.1% 71.0%

https://doi.org/10.1016/j.biosystemseng.2019.08.013
https://doi.org/10.1016/j.biosystemseng.2019.08.013


Fig. 10 e (a) The results when not using INMS and (b) when using INMS. There are many overlapping boxes after NMS,

whichmay cause some aphids to be repeatedly detected. The number of overlap boxes could be effectively reduced by using

INMS.

Table 4 e Detection results AP over IoU 0.5 and FPS of fine
network.

Method AP mean FPS

FCNN 90.9% 19

DSSD 87.6% 8

Faster-RCNN 85.4% 9

ReFCN 89.7% 7

FPN 93.2% 5
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results in multi-scale detection. As Fig. 12 shows, compared

with the detection results of FPN, ReFCN, DSSD and Faster-

RCNN, our proposed method could effectively detect the
aphids in dense distribution regions. Thus, it indicates that

our approach could improve the detection accuracy of aphids.

3.5. Results for different crops

The aphids in our dataset come from three crops: wheat, rape,

and corn. Aphids have different distribution densities in

different crops, and the aphid Precision-Recall (PR) curves for

each crop are shown in Fig. 13. As the PR curve shows, there

are some differences in performance between the different

crops. Specifically, in our dataset, the number of aphid images

for wheat are greater than for other crops (Table 1), and

furthermore wheat aphids are more dispersed. Therefore, the

wheat has the best result. The distribution of rape aphids is

https://doi.org/10.1016/j.biosystemseng.2019.08.013
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Fig. 11 e Detection results of Fine Convolutional Neural Network (FCNN). The chocolate boxes are the dense regions detected

by using CCNN and the red boxes are the aphids detected by using FCNN. (For interpretation of the references to colour in

this figure legend, the reader is referred to the Web version of this article.)

Table 5 e Detection results AP value over IoU 0.5 of CFN. To improve detection accuracy and computational efficiency, we
adopt two-stage approach as Coarse Network and one-stage approach as Fine Network method.

Method Method of Coarse Network Method of Fine Network AP

CFN Faster-RCNN-INMS DSSD

FCNN

66.8%

68.6%

ReFCNeINMS DSSD

FCNN

71.3%

73.5%

FPN-INMS DSSD

FCNN

75.1%

76.8%

FPN e e 64.3%

ReFCN 63.1%

DSSD 58.8%

Faster-RCNN 55.9%
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the densest, and it has the lowest detection accuracy. This

indicates that it may be easier to detect aphids in wheat and

the aphids in rape may be more difficult to detect.

3.6. Result for resolution

Since aphids are tiny pests, the sharpness of the image may

affect the detection results. The original size in our datasets

is 1440 � 1080. To investigate the effect of image size for

performance, the input image sizes were set to 960 � 720 (0.5

multiple), 1140 � 1080 (1 multiple), 2160 � 1620 (1.5 multiple)
and 2880 � 2160 (2 multiple) respectively. As Fig. 14 shown,

the image size set to 2160 � 1620 has the best result, because

the tiny aphid is easily detected by amplification. However, it

is not the biggest size that has the best result. When the

image scale reaches a certain size, the original image be-

comes blurred, making it difficult to distinguish the aphids

from the background. From Fig. 14, we can see that the res-

olution of 2880� 2160 gives the poorest result comparedwith

the other three resolutions. Thus, the sharpness of image

can affect the detection result and the biggest image size is

not the best.
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Fig. 12 e The final result with CFN compared with four state-of-the-art methods: (a) The result for CFN (b) The result for FPN

(c) The result for ReFCN (d) The result for DSSD (e) The result for Faster-RCNN.

Fig. 13 e Precision-Recall Curve for wheat, corn and rape.
Fig. 14 e Average Precision (AP) for different image sizes.
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4. Conclusion

In this work, we present a CNN-based Coarse-To-Fine

Network (CFN) for tiny and densely distributed aphid detec-

tion in images taken in natural field conditions. In our

method, CCNN is responsible for detecting the aphid cliques,

in which we develop an improved NMS (INMS) to eliminate

overlapping regions. In the next phase, FCNN is proposed to

refine the clique regions and obtain the single aphid objects.

Final results are obtained by combining the outputs from

CCNN and FCNN. Under our enriched wild aphid dataset, CFN

could deliver 76.8% AP on aphid detection task, which out-

performs four state-of-the-art methods.

The major contributions of CFN are:

(1) A domain specific dataset for aphid recognition and

detection in the field containing more than 2000

images and 45424 annotated aphids is published in

this paper. Specifically, this dataset is evaluated for

high application value in practical aphidmonitoring.

(2) A coarse-to-fine network (CFN) towards aphid

recognition and detection in dense distribution re-

gions is proposed, which is feasible to apply for

practical aphid prevention. Experimental results

demonstrate the advantages of the proposed algo-

rithm over other four state-of-the-art approaches.

(3) An improved non-maximum suppression (INMS)

method is proposed in this paper. Our method can

eliminate the overlapping bounding boxes, which

further improve the performance of our method.

In the future, we will target improvements in the general-

isation of our CFN and transferring it into generic dense object

detection tasks.
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