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ABSTRACT

Our life is populated with many small-size objects, such as human in aerial images and tiny pests in agri-
culture. Current generic and small object detection methods are only focus on tackling their sizes rather
than distribution. Considering this limitation, we state a Densely Clustered Tiny (DCT) object detection
problem using a novel metric Object Density Level (ODL) to measure the object distribution in an image.
The DCT problem allows varied densely distributed objects in the real-world captured images. In dealing
with the DCT problem, we select two kinds of aphids that usually gather into cliques in the real-world
agricultural environment, and build an aphid dataset APHID-4K in our task. Accompanying the DCT task,
we propose a novel DCT detection network (DCTDet) to address this challenge. Specifically, a Cluster
Region Proposal Network (ClusRPN) is trained to select appropriate densely distributed object cluster
regions from images. These candidates are classified into different groups according to their density. A
Density Merging and Partition module (DMP) merges and partitions them respectively and finally out-
puts cluster regions with uniform size and density to a subsequent Local Detector Group (LDG). In addi-
tion, we also use Composited Cluster data Generation (CCG) to present a large-scale dataset for ClusRPN
optimization for robust training procedure and theoretically analyze their effects in detail. Experiments
on APHID-4K and another clustered small object detection dataset VisDrone show that our DCTDet

achieves state-of-the-art performance.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Object detection based on computer vision plays a significant
role in the monitoring and surveillance applications. The high-
resolution small object detection has become an important field,
such as object detection in high-altitude aerial images [1,8,51].
However, in some specific applications, the objects are different
from those in aerial image datasets, such as the aphid detection
in wild field. The in-field aphid detection is an integral part of
the automatic monitoring of agricultural pests. According to the
current requirements of in-field pest automatic monitoring appli-
cations, a person without any professional knowledge should be
able to quickly judge the presence of pests in a photo captured
by mobile cameras, as well as their quantity and location for sever-
ity level evaluation and precision applying pesticide. While aphids
may only occupy about 100~400 pixels, which are much smaller
than the “small” objects(32 x 32 = 1024 pixels) defined in MS
COCO [20]. Meanwhile, they often distribute in very small areas,
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which are denser and smaller than objects in aerial images. There-
fore, we state a new problem: densely clustered tiny(DCT) object
detection. There are three main features of this problem: 1) most
objects are tiny; 2) objects are densely distributed in cluster
regions; 3) the cluster regions are small. In order to evaluate the
distribution of small and tiny objects on 2D images, we utilize a
metric named object density level(ODL) to measure their cluster-
ing degree using a sliding window. In the aphid dataset, the density
levels of clustered objects are much higher than those in small
object detection tasks. Therefore, we name the new task as DCT
detection task.

There are two challenges for addressing the problem: 1) To the
best of our knowledge, there is no publically available dataset for
the DCT detection task, especially in specific applications, such as
in-field aphid detection. Although there are many datasets for clus-
tered small object detection like aerial image datasets [56,6,48],
their cluster areas are large, and the density is not high enough.
2) The existing methods for clustered small object detection under-
perform when they are directly applied to our task. Due to the fea-
tures of DCT task, it is difficult for the existing methods to
accurately locate the cluster regions and select precise size through
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scaling processing. So, the results of region extraction are generally
larger than their actual sizes(as shown in Fig. 1).

To solve the first challenge, we build a specific in-field aphid
dataset named APHID-4K for the DCT detection task. This dataset
contains more than four thousand wheat aphid images captured
by specific mobile image collection devices. A large proportion of
the aphid objects meet the features of DCT task.

To address the challenges of the insufficient methodology of the
DCT detection task, we propose a Densely Clustered Tiny object
Detection network (DCTDet) based on the cluster region proposal.
DCTDet consists of three core components, including a Cluster
Region Proposal Network (ClusRPN), a Density Merging and Parti-
tion module(DMP), and a Local Detector Group (LDG). ClusRPN pre-
dicts the density of assigned regions in an image according to the
ODL and output candidates of cluster region chips. Then the chips
are categorized into several density groups and sent through DMP
to merge the overlapping regions and divide them into suitable
sizes. Then these merged chips are sent to subsequent LDG for local
object detection. Finally, the local detection results are fused with
those from the global detector using a Non-Maximum Suppression
(NMS) post-processing step [27]. In order to fully exploit value of
the limited clustered regions in the non-large-scale dataset, such
as APHID-4K due to the collection difficulties, we present a Com-
posited Cluster data Generation approach (CCG) to generate a
external large-scale dataset containing additional distribution
information to optimize the prediction performance of ClusRPN
in the training phase.

Compared with existing approaches, DCTDet shows several
advantages: 1) Comparing with [8,15], which conducted initial
detection first to obtain dense information, ClusRPN directly out-
puts regions with density levels and greatly reduces the computa-
tion cost; 2) By using DMP, the chips sent to fine detectors have
similar sizes and density, reducing the impact of size span and
non-uniform density on the local detection performance; 3) Our
method only optimizes the cluster region extraction stage without
any modification to the local detection network and the fusion
strategy, so our method can be easily applied to the existing
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state-of-the-art methods, such as methods in [39,53] for further
improvements.
Our contributions are summarized as follow:

1) A novel object detection task named densely clustered tiny
(DCT) object detection is proposed. We state this task in detail
and present a related dataset APHID-4K.

2) We propose a novel DCTDet network to address the chal-
lenges of DCT detection task. DCTDet exploits the density infor-
mation to improve the performance of DCT detection.

3) The proposed method outperforms state-of-the-art methods
of clustered small object detection on APHID-4K. Extensive
experiments suggest that the proposed method achieves
state-of-the-art performance on VisDrone.

2. Related work

Generic Object Detection. Generic object detection has devel-
oped rapidly based on the deep convolutional neural networks
(CNNs) [26] and image recognition [13]. Most of the state-of-the-
art object detectors [36,12,28] have a similar architecture consist-
ing of a deep backbone network for feature extraction from images
and a hierarchical neck network [18] laterally connecting for con-
nections of semantic feature maps and a head network [34,2] for
classification and localization of objects. According to the detection
pipeline, the existing methods can be roughly classified into
region-based [9,34,11] and region-free [23,32,19,55,33]. The main
difference between these two categories is whether the detector
performs a candidate region selection on the feature map before
classification and localization. This stage significantly improves
accuracy at the expense of reduced efficiency.

In-field Pest Detection. In-field pest control and prevention
have become a top-priority task in agriculture around the world
[47,16]. Due to the time-costing and labor-consuming issues of
traditional manual pest monitoring, automatic pest monitoring
through fixed and mobile cameras is increasingly being used, fol-
lowed by a huge demand for well-performing pest image detec-

“Precise R\egion' '

L

Fig. 1. The main features of aphids: 1) extremely small in size; 2) densely distributed; 3) small cluster region. In this case, the different size of region selection brings

significant change in internal density and size span of inclusive objects.
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tion. Compared with the early works using image processing algo-
rithms [46,31], recent methods [49,40,47,42] inspired by CNNs and
generic object detection has achieved remarkable successes. How-
ever, tiny scale and high density remain the main issues limiting
the performance of pest detection [16,21].

Small object detection. In the small object detection tasks, the
main challenge is that the features of the edges of small objects are
not obvious, so that most existing general object detection meth-
ods can hardly perceive them. Many works [10,22,44] proposed
novel feature fusion methods for FPN-based detectors [18],
enabling the networks to obtain more object information from
shallow feature layers. Some works [52,17] also utilized the atten-
tion and context semantic information of objects from high-level
feature layers. Other methods proposed new metrics
[43,35,54,50] based on the IoU and AP to get rid of the sensitive
evaluation of bounding boxes of small objects. In addition, Super
Resolution(SR) is also an effective way to recover the information
of low-resolution objects [29,5]. Although these methods per-
formed well in small object detection tasks, the clustered small
object detection task is still a challenge.

A general solution of clustered small object detection is to sim-
ulate the human vision process which divides the detection pro-
cess into two stages: 1) select local regions from the global
image as the local receptive fields; 2) conduct up-sampling opera-
tion and fine detection on these local regions. In the region select-
ing stage, the early works [7,25] relied on randomly or evenly
dividing the image to obtain regions that may contain objects.
Although these methods achieved good performances, they seri-
ously waste computing resources when the image contains many
sparse objects. To accurately select the regions of interest as effec-
tive receptive fields, many region searching methods for small
objects have been proposed. These methods can be roughly catego-
rized into direct region selection and indirect region selection. The
direct selection is to train a network to propose candidate regions
directly. [37] conducted multi-scale training by processing
context-regions around ground-truth instances generated using a
region proposal network. [14] designed a RPN-like network to pro-
pose regions of object of interest(ROOBI) from a large-scale aerial
video frame. [51] suggested a Cluster Proposal sub-net(CPNet)
aiming to address the cluster region searching before detection.
The work of [39] proposed a CPEN network to locate the cluster
regions by predicting the center points of clusters of small objects.
The indirect selection is to perform an initial detection to obtain
density information first, then select regions based on clustering
algorithms. Some methods [8,45] used a coarse detector to obtain
the rough object distribution information so as to locate cluster
regions. [15] introduced the density map, which is popular in
crowd counting tasks, into the distribution estimation and cluster
localization.

However, these region searching methods have some disadvan-
tages in the DCT detection task: 1) the initial detection of indirect
methods easily mistake dense areas for sparse areas due to the
missed detection of tiny objects; 2) the output candidates tend to
contain more objects rather than uniformly clustered objects
because the methods based on cluster region proposal usually
use the number of inclusive objects to evaluate the density. These
issues cause the existing methods to output larger regions but not
precise regions in DCT detection task.

3. Problem statement

As mentioned earlier, the DCT detection problem setting
advances the small object detection and clustered object detection
in three aspects: the sizes of individual objects are tiny, the clusters
are dense, and the cluster regions are small. In order to state the
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DCT detection problem more clearly, we propose the following
process to evaluate a dataset.

Given a RGB single image [; from the dataset 2 = {I;, L»,...,Ix}
as input. The objects in this image are annotated as bounding
boxes % = {b; }]Ail as well as their categories 4 = {d }J’\ll

Firstly, we expand the definition of size metrics in COCO by
adding a new evaluation size 16 x 16 = 256 pixels. The objects
smaller than this threshold are defined as “tiny” objects.

Then, a square multi-size window is used sliding on the image.
We use object density level (ODL) to evaluate the density degree in
the current window w, which is defined as following:

ODL,, = log <&> +0 (1)
Sw

where S,, is the area size of the window, N,, is the number of objects
in the window, O is the offset coefficient to ensure that the level is
positive within the valid area, which is 10 in this paper. We use
square windows to measure ODL. For convenience, the side length
L, of windows is used instead of the area size to represent to win-
dow sizes in this paper. As shown in Fig. 3, when the window size is
fixed, the larger the number of inclusive objects is, the higher the
ODL is, and the denser the inclusive cluster is. We divide the ODL
into five intervals to represent different clustering degrees, namely:
no cluster (1-2), sparse cluster (2-2.5), medium cluster (2.5-3),
general cluster (3.0-3.5) and dense cluster (3.5-4).

When the window frames objects, we calculate the ODL and
expand the window until current clustering degree decreases. Then
we regard the current window size as the edge size Lop; of the clus-
ter. By calculating the average edge size Lop, of each degree in the
image, we obtain the distribution of cluster sizes in the image.

Finally, we define that a DCT detection task should meet the fol-
lowing requirements:1) the majority of objects are smaller than
“tiny” threshold; 2) the proportion of clusters in dense cluster
degree is high; 3) the edge size of dense cluster degree is small.

4. Dataset

APHID-4 K. The dataset contains 4,294 real-world wheat aphid
images (3,435 images for training and 859 images for testing) with
54,681 annotated objects of two categories of aphids located on
diverse backgrounds, including leaf surface, wheatear, straw root,
and ground. The resolution of images is about 1440 x 1080 pixels.
We spent two years collecting aphids images at different growth
stages of wheat using a specific collection device. This collection
device consists of a front macro camera, a mobile data transmis-
sion terminal, and a retractable carbon-fiber bracket. The camera
can easily reach into the depths of wheat crops to take pictures
and automatically upload them to the server for storage and anal-
ysis. We annotate aphids according to the standard process of the
COCO dataset. We do not generate additional ground-truth of clus-
ters for training like [51] did. In order to meet our DCT detection
task, we screened out the images containing fewer than five
objects from our collections.

We compare the APHID-4K with the representative dataset of
small object detection VisDrone [57,56], the results are shown in
Fig. 5. (a) shows that the tiny objects occupy the largest proportion
of APHID-4K, while the object sizes of VisDrone vary. As shown in
(b), the majority of clusters in APHID-4K are in dense cluster
degree(3.5-4), while VisDrone has the largest proportion in gen-
eral cluster degree(3-3.5). (c) shows that the average edge size of
clusters in APHID-4K is much smaller than that in VisDrone.
According to our previous statement on DCT detection, APHID-4K
meets the features of DCT task, while VisDrone is a typical clus-
tered small object dataset. Fig. 4.



J. Du, L. Liu, R. Li et al.

Composited Cluster
Data Generation

ODL
prediction

Regions with different
density degrees

Density Merging and Partition
Dense and
General clusters
1

Neurocomputing xxx (XXXX) XXX

Module

Detector

/

Merging
and
partition

Detector

Detector

T

Global
Detection

Fig. 2. Densely Clustered Tiny Object Detection network (DCTDet). DCTDet consists of three main parts: 1) a cluster region proposal network for region selecting; 2) a density
merging and partition module for uniforming region chips; 3) a local detector group for fine detection. Also, a composited cluster data generation pipeline is used to generate

images containing clustered objects.
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Fig. 3. Illustration of ODL. In practice, it is necessary to set maximum and minimum
limits to ensure that the levels are within a valid range.

Composited Cluster Data Generation. Compared with the col-
lection of aerial images, it is far more challenging to collect DCT
data in many specific applications. We take the establishment of
the APHID-4K dataset as an example. Since the time and space
spans of pest occurrence are usually huge, it is labor-consuming
and time-cost to obtain high-quality images of cluster pests in
the field. Besides, due to the requirement of hiring agricultural
experts to guide the labeling process, the overall cost of establish-
ing a large-scale dataset is extremely high.

In order to fully exploit the value of real data in a relatively
small DCT dataset to complete accurate cluster region selection,
we present a large-scale dataset of additional distribution informa-
tion using a general image generation method for the DCT detec-
tion task, including two approaches: CCG-R and CCG-F. The CCG-
R aims to generate roughly realistic images, the CCG-F generates
totally fake cluster-only images. Along with APHID-4K, we present
two composited cluster data generated by each approach, contain-
ing 32,000 images, respectively.

The pipeline of the CCG-R approach is as follows:

1) randomly cut 200 real individual aphids from the original
images as paste materials; 2) select a large number of crop images
that do not contain aphids as paste backgrounds; 3) set a specific

(b)

Fig. 4. (a) Collection device: 1-camera, 2-bracket, 3-mobile terminal; (b) Samples of APHID-4K. Aphids are tiny in size, and their distributions are complex and diverse.

4
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Fig. 5. Comparison between APHID-4K and VisDrone. (a) Object average size. (b) ODL distribution of clusters. (c) Average edge size. The regions in no cluster degree(less than

2 ODL) are not taken in consideration.

paste density level and calculate the paste region size L and indi-
vidual number N, and then make a corresponding M x M square
grid; 4) randomly select a crop leaf position in background as the
paste centre; 5) randomly select individual aphids from paste
materials and paste them in the grid around the paste centre; 6)
use the Poisson fusion method to make the paste boundaries more
naturally (Fig. 6).

In the CCG-F, aiming to generate images with density-only
information, we completely ignore the geometrical and morpho-
logical features of aphids by replacing them with small elliptical
spots and annotate them as a new category “fake”. Then we use
a solid color (green in the paper) instead of crop images as
backgrounds.

Different from the general data augmentation methods that
directly expand the original dataset during the whole training
phase, CCG is independent of the original data and only targets
the training phase of the cluster region proposal network. Because
in the DCT tasks, even in a small-scale dataset, the number of indi-
vidual objects is already large enough while the number of dense
regions is extremely small(the gap is about 10-100 times). This
imbalance makes region proposal network hard to be well trained.
Therefore, the region proposal network needs additional training
to obtain better region prediction performance. However, the gen-
eral dataset expansion methods are prone to cause over-training of
local detectors, and the image distortion caused by the simulation
data could lead to potential deteriorated performance of local
detectors.

We explain the CCG training mechanism in detail in Section 5.5.

5. Densely clustered tiny object detection network (DCTDet)
5.1. Overview

There are two main problems with DCT tasks: 1) the size of
object is too small, which are hardly detected because the edge fea-
tures of individual objects are not obvious; 2) the large size and
density span between each clustered regions affect the detection
accuracy of the single fine detector. As shown in Fig. 2, to address
the problems, the proposed method is designed in two aspects: 1)
the ClusRPN is designed to perceives the gathering regions and an
up-sampling process is conducted during the fine detection, which
increases the size of individual objects so that the tiny objects are
easier to distinguish by enlarged edges; 2) the region chips are
divided into multiple groups according to the density and the chip
sizes in each group are uniformed by DMP, then the LDG is used to
separately detect each chip group, which effectively avoids the
problem of size and density span. Therefore, the proposed method
improves the detection performance of clustered object detection
networks in DCT tasks.

5.2. Cluster region proposal network (ClusRPN)

Motivated by the region proposal network (RPN), which outputs
rough location candidates of objects, the ClusRPN output location
candidates of cluster regions.

In the training phase, a window of different sizes slides on the
images and calculates ground-truth ODL based on the window size

Fig. 6. Examples of two generation approaches (enlarged for best view). These approaches are very simple and do not require very realistic results.
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and the number of inclusive objects in the current region. Then
ClusRPN calculates the loss of current region based on the
ground-truth ODL and the predicted ODL. The loss function of
ODL for an image is defined as:

Zyclus 517 , (2)

clus i

L({si}) =

where s; is the predicted ODL of the i-th region, and s; is the ground-
truth ODL. The loss is normalized by the number of regions N;.
And the loss Zus(si,s7) is defined as:

ZLeus(si,5;) = SmoothL1(s;, s}) (3)

Although ClusRPN shares a similar idea with RPN, they are very
different. In terms of purpose, RPN predicts whether there are indi-
vidual objects at certain positions in a picture, while ClusRPN pre-
dicts the object density(ODL) of each position in a picture. In terms
of architectures, RPN is composed of a classification branch and a
regression branch, while ClusRPN is composed of only one ODL
prediction branch. Additionally, since ClusRPN focuses on the
region density, the training of ClusRPN is independent to that of
object detectors. Therefore, the use of artificial CCG dataset will
improve ClusRPN without any impact on subsequent fine
detectors.

5.3. Density merging and partition module (DMP)

Algorithm 1: Density Merging Process

Input: Initial clusters 24 = {bq,...,
clustering degree 2 = {d,...,dy}, merging threshold N;

Note: OL(a,b) = (anb)/min(a,b) means the proportion of
overlap in the smaller region. MERGE(7") is the operation of
merging the regions and outputs merged regions with its
clustering degree.

Output: Merged clusters .#;, and corresponding clustering
degrees .4

1: My, My — {}

2: while # # empty do

by}, corresponding

3: k— argmaxZ; T, — {74 — {}

4: forb; in # do

5: if OL(b,.bk) >N &d; = dk then

6: Tp— TpUlb}y;74 — T40{d;}
7: end if

8: end for

9: if 7, # empty then

10: T —A{Tp, T4}

11: by, d, — MERGE(7)

12: %’<—(%’—jb)U{b;{},@h(gl—fd)U{d;{}
13: else

14: My — My {bk};</l/d — Mg U {bk}
15: end if

16: end while
17: return 4y, M4

As shown in Fig. 2, the outputs of ClusRPN are a series of candi-
date cluster regions with various density levels and scales. Many of
them with similar density levels are highly overlapped. In order to
reduce the computation burden, we need to merge the highly-
overlapped regions. In this merging process, a series of clustering
degrees defined in Section 3 are used and only those within a same
degree are merged to ensure the density in the merged region is
still uniform. Let % = {b,,...,by} represent the set of bounding
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boxes of cluster regions detected by ClusRPN, where
b; = {xmin ymin xmax ymaxl are the upper left and bottom right coor-
dinates. ¢ = {d;,...,dy} is the corresponding clustering degrees.
We wuse OL(a,b) = (anb)/min(a,b) to measure the overlap
between two regions and set a pre-defined merging threshold N,
to determine whether merging is needed. MERGE(7") is a simple
operation for merging regions in set = {by,...br}, which finds
the minimum x{’;”} 1 yte'1 7 and maximum X7y, as the
merged region coordinates. The clustering degree of the merged
region is the one of the set .7

The implementation process of merging is shown in Alg.1.
Briefly, the merging process starts from high to low clustering
degrees. It picks a region from # and merges it with other highly
overlapped areas within the same clustering degree. The merged
region is put back into the original set # unless there are not
regions to merge. This process will be repeated until all regions
in the candidate set # are picked out. After that, we perform a par-
tition operation for overly large regions to limit the size span of dif-
ferent candidate regions. In this paper, we directly use bisection
operation for those regions exceeding the size threshold L;, and
keep some overlapping areas at the edge of the segmentation.

5.4. Local detector group (LDG)

Through DMP, region chips are divided into similarly sized
groups according to their ODL. We established a local detector
group consisting of several parallel detectors to detect these
groups of chips separately. Each detector dedicates the detection
at a specific object density in a similar size. Therefore they will
not be affected by the large size spans during the resizing opera-
tions. Most existing detectors can be utilized as local detectors.

The objective function of a single fine detector can be repre-
sented as,

Lfine = mmNZ( Cets + j?eg) (4)

where N is the number of training samples. When the multiple fine
detectors LDG are utilized for different density groups, the objective
function is defined as,

Lipc = mmz E

G
_mm< 12(%‘5 Pg) +- -+NiNz(fzs f:fg)>

nl=1 n6=1

()

where G denotes the number of density groups, N = Zgz1Ng
denotes the sum of the training samples in each density group.
We assume that the data distribution of each density group is obvi-
ously different from others while similar within their own group.
Then, using multiple detectors to fit the data distribution of differ-
ent density groups is intuitively better than using a single detector
to fit. Therefore, we obtain a better objective function to improve
the entire performance of fine detection.

5.5. Training with composited cluster data

When the cluster regions in the dataset are insufficient during
the training phase, ClusRPN relying only on the original datasets
usually output larger scale with imprecise density levels (as shown
in Fig. 7). To fully exploit these cluster information in dataset to
improve the performance of ClusRPN, we use CCG together in
ClusRPN training phase.
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Fig. 7. ClusRPN under-performs due to insufficient training(enlarged for visualization). We find that the network has already been able to select dense cluster areas correctly,
but there is a significant deviation of density level prediction. The predicted density levels of low-density areas are much higher than their ground-truth, which causes the

size of the final proposed regions to become larger.

CCG provides two kinds of cluster data generation approaches:
CCG-R and CCG-F. CCG-R is a common data augmentation method,
similar to the Mask Resampling Module in [39]. While CCG-F does
not consider the reality of images and only keeps cluster informa-
tion. In order to better illustrate the feasibility of them, we analyze
the effect of CCG on ClusRPN.

According to the function of ClusRPN, it has two main capabil-
ity: the first capability of ClusRPN is to distinguish the foreground
objects from the background, which is similar to the classifier
branch of RPN, the second capability is to accurately predict the
ODL of the foreground objects. So the integral capability of ClusRPN
can be represent as:

Cotusroy = {c’j,s, CE el K = (ki ks, .. .}} (6)

where K is the set of foreground object categories, CX; and Cﬁ,ed
denote the capability of classification and ODL prediction.

CCG-R uses the existing object category kn, € K to generate
images, so as these images enable the network to conduct an addi-
tional training process on k;,. Since ClusRPN does not distinct cat-
egories within K it is regarded as a further training process of ODL
prediction on the whole set K. In this way, Cﬁmi is improved. The

issue of the imbalance of categories along with the additional

Table 1

training of classification on category k, can be resolved by gener-
ating objects of multiple categories. As long as the generated
objects are realistic enough, CX is not affected much. However,
in order to ensure the reality of generated clusters, some process-
ing like Poisson fusion are utilized. Particularly in the database of
VisDrone, objects of many categories are complex, which makes
the implementation of this approach difficult to avoid the distor-
tion of simulated images.

CCG-F generates cluster data containing a fake category

kiake ¢ K. The new set is represented as K= {k1,kz, ..., Kage }. Sim-

ilar to the first approach, C,Ifrea is improved by conducting additional
training. Different from the first approach, since the added cate-

gory ki is extremely different from all other categories, CX, for

the original set K is almost unaffected. After ignoring the reality
of objects, the CCG approach is greatly simplified and brings simi-
lar improvement to the CCG-R.

Despite using paste, the idea of CCG-F is totally different from
the idea of CCG-R, which is a general data augmentation method.
1) In term of method, CCG-F does not rely on any dataset, which
means it does not require any real object and background from real
dataset. 2) In term of purpose, CCG-F is to optimize the capability
of ClusRPN to find specific density regions from a small-scale data-

The detection performance on APHID-4K. We compare our DCT detection methods with other two groups: generic detectors and clustered small object detectors. The inference

time is measured on an RTX Titan GPU.

Method Backbone CCG DMP LDG AP APsq AP;5 s/img(GPU)
Generic Detection methods
FCOS [41] ResNet101 22.0 61.9 8.7 0.049
Yolov3 [33] DarkNet53 17.6 52.0 5.7 0.022
RetinaNet [19] ResNet101 17.5 51.3 6.5 0.054
Faster RCNN [34] ResNet101 23.6 63.2 10.8 0.062
Faster RCNN + DCN [4] ResNet101 23.6 62.8 114 0.068
Libra Faster RCNN [30] ResNet101 23.8 61.5 11.7 0.065
Cascade RCNN [2] ResNet101 245 64.6 12.0 0.072
EfficentDet-D5 [38] EfficentNet 20.5 49.2 9.5 0.139
Clustered small object Detection methods
SNIPER [37] ResNet101 25.6 52.1 7.3 0.220
ClusDet [51] ResNet101 28.5 64.9 8.6 0.297
DMNet [15] ResNet101 30.1 58.3 15.7 0.323
DCT Detection methods(Ours)
DCTDet(Baseline) ResNet101 25.1 67.4 131 0.240
DCTDet ResNet101 I 27.0 68.6 13.6 0.240
DCTDet ResNet101 30.5 71.8 16.3 0316
DCTDet ResNet101 e I I 33.2 75.3 184 0.316
DCTDet + YOLOv3 DarkNet53 I 339 75.8 221 0.218
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Fig. 8. Qualitative results of DCTDet and ClusDet [51] on APHID-4K. Cluster regions are enlarged for visualization. The uppers are results of DCTDet, the lowers are results of
ClusDet. There are obvious challenges of missing detection and inaccurate detection in the results of ClusDet while our DCTDet could perform well.

Table 2
Quantitative results on the validation set of VisDrone dataset. The * denotes the
multi-scale inference and bounding box voting are utilized in test phase.

Method Backbone AP APsq AP5
ClusDet [51] ResNeXt101 284 53.2 26.4
RRNet [3] Stacked Hourglass 29.1 55.8 272
DMNet [15] ResNeXt101 294 49.3 30.6
CPEN + CenterNet [39] Hourglass-104 29.3 38.7 324
CRENet [45] Hourglass-104 33.7 54.3 335
HRDNet [24] ResNeXt50 + 101 335 56.3 34.0
DCTDet ResNeXt101 32.8 56.6 30.8
DCTDet* ResNeXt101 33.9 57.7 329

set rather than using synthetic realistic images to increase the
dataset itself. Therefore, it should be regarded as an optional part
of the ClusRPN for non-large-scale dataset training. 3) In term of
generality, CCG-F has an extremely simple implementation and
can by applied to almost any DCT dataset. Also it perfectly avoiding

the potential performance issue of image distortion caused by sim-
ulation data.

In Section 6.3, we conduct a series of ablation experiments on
this part and analyze the effects in detail.

6. Experiments and analysis

We implement an RTX Titan GPU to train and test our proposed
model. On APHID-4K, we use ResNet101 and Cascade R-CNN with
ClusRPN as the baseline model of DCTDet. Although DCTDet is a
specifically designed method for DCT detection tasks, we apply it
to the representative clustered small detection dataset VisDrone
for performance comparison to verify its generality. Cascade R-
CNN and ResNeXt101 is used in the model. We train the detectors
for 24 epochs. The learning rate is 5.0 x 10~* and the batchsize is 4
in accordance with the setting of ClusNet [51] and DMNet [15].
Other parameters are all followed the default configurations of
MMDetection.
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Fig. 9. Visualization of DCTDet detection results on VisDrone. We choose pictures used for visualization results in DMNet [15] (left) and PENet [39] (right). The first row is the
visualization results of DCTDet. The second row and the third row show the comparison detection performance between DCTDet and these methods in the tiny. object

regions.
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6.1. Results on APHID-4K

Table 1 shows that our method achieves 33.9% AP on APHID-4K
dataset, which is 9.4% higher than the state-of-the-art generic
object detection methods and 3.8% higher than the state-of-the-
art clustered small object detection methods. The inference time
of the proposed method outperforms state-of-the-art clustered
small object detection methods. When using Yolo as fine detectors,
our method obtains the best inference speed.

When CCG is added to the baseline of DCTDet, the performance
of ClusRPN improves due to the more precise predicted clustered
regions. The 1.9% increase in AP demonstrates that the perfor-
mance of the subsequent fine detection benefits from the precision
of region cropping. In addition, DMP and LDG contribute 5.4%
improvement in AP to the baseline, which verifies the assumption
in Section 5.3 and Section 5.4: the density grouping with uniform
size and multiple fine detectors can greatly improve the overall
detection performance. When CCG, DMP and LDG are all utilized
at the same time, the fine detectors can obtain both precise region
prediction and accurate density grouping, DCTDet achieves a fur-
ther 2.7% improvement. Fig. 8.

6.2. Results on VisDrone

VisDrone contains a lot of densely clustered and sparsely dis-
tributed small objects. As shown in Table 2, by using CCG-F to
improve ClusRPN and LDG for multiple fine detection, the perfor-
mance of proposed method achieves comparable performance,
which shows that our method performs well in such complex dis-
tributed datasets. Need noting that DCTDet is not designed for

Neurocomputing xXx (XXXx) XXX

multi-scale tasks, so it is acceptable that its overall AP is slightly
lower than some multi-scale detection methods. From the visual-
ization results in Fig. 9, we can clearly find that the proposed
method can perceive tiny objects near the horizon in the distance
very well, which are prone to be missed by other detection meth-
ods. The inference time of the proposed method is 0.672 s/img and
0.971 s/img when utilizing multi-scale inference and bounding box
voting.

6.3. Ablation study

We perform ablation studies to analyze the effects of two
important parameters of CCG on the ClusRPN performance: the
quantity ratio and the density level. We use three metrics to eval-
uate the effect: 1) correct rate: the proportion of candidate regions
that correctly contain target object; 2) average edge size: the aver-
age edge size of candidates of the corresponding density group; 3)
average deviation: the difference between the predicted density
level and the ground-truth density level, evaluating the overall
performance of the network.

Effect of Quantity Ratio. When the quantity ratio is low, the
additional training to ClusRPN is not enough. On the contrary, high
quantity ratio leads to the network deterioration due to the over-
whelming amount of the fake data. We experimentally explore
the trade-off between the two issues. As shown in Fig. 10(a), their
best performing ratios are level 4 and level 2, respectively.
Although the CCG-R is better than CCG-F, the difference is mar-
ginal. Overall, the two CCG approaches all markedly improve
ClusRPN performance.
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0.7 . 1—ratfo=4
0.90 350 \ 1-ratio=8
- 0.6 % @® 2-ratio=1
0.85 0.5 1 ® 2-ratio=2
250 1 0.4 - ® 2-ratio=4
0.80 v T T 200 0.3 ! ) 2-ratio=8
) N Y 5 o 5 o >
P12 P 7 P Pl 2 Prl 7
29 19 19 2% 19 2%
Correct rate Edge size Deviation
(a)
1.000 - 450 k 10
0.9
0.995 - 400 1
X 1-level=2
0.990 A 350 X 1-level=2.5
1-level=3
0.985 300 X
2-level=2
0.980 - 250 A 2-level=2.5
P ® 2-level=3
0.975 L+ : J 2004
s o Y s
Pe2 A 7 P
7_.0 'L."’ 'L'o

Correct rate

(b)

Edge size

Deviation

Fig. 10. Comparative result of ablation studies of CCG on APHID-4K. (a) The effect of quantity ratio; (b) The effect of ODL. A performance comparison with the original data is

also added to (a). The "1-" and "2-" means the use of the CCG-R and CCG-F.
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Fig. 11. Visualization results on APHID-4K.

Effect of Density Level. The improvement of ClusRPN varies
according to different ODL of generated cluster data. In order to
ensure the prediction accurate in ClusRPN, we need to carefully
select the ODL of composited data. As shown in Fig. 10(b), the
CCG approaches improve the performance of ClusRPN at all den-

10

sity levels. Meanwhile, images generated at specific density
levels show better effects on the region proposal performance
at the corresponding density levels. In general, for APHID-4K,
ClusRPN performs better when the ODL of CCG is 3 (Figs. 11
and 12).
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Fig. 12. Visualization results on VisDrone.

7. Conclusion

In the paper, we put forward the DCT detection problem and
present a relative dataset APHID-4K for this task. To address this
problem, we propose a DCTDet where a ClusRPN is designed to
directly predict the object density levels of the sliding window
on the image to find the densely clustered regions. In addition,
we present a data generation method CCG for optimizing the
ClusRPN, which is verified effective for small-scale DCT datasets.
We also prove that using multiple fine detectors LDG for region
chips of different densities can effectively improve the local detec-
tion performance. Experimental results demonstrate that DCTDet
significantly improves the performance of other popular detectors
in DCT tasks. Our method also achieves state-of-the-art perfor-
mance on VisDrone.
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