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Abstract
Cross-category object perception is one of the essential upstream
tasks for generelizable robot object interaction and manipulation.
Recently, an increasing number of researchers are focusing on inves-
tigating visual Generalizable and Actionable Parts understanding
at cross-category level perception. However, these works are built
upon the RGB-D or point cloud input, that relies on the depth infor-
mation capture. Under the circumstances of limited depth camera
performance, e.g. transparent or light absorbing material, percep-
tion algorithms that do not require depth information are urgently
needed. In this paper, we propose DFGAP, a novel depth-free frame-
work for RGB-based GAParts segmentation and pose estimation.
Specifically, we independently model the ill-pose problems from
the absence of depth for GAPart segmentation and pose estimation,
by clearly quantifying the pixel-wise segmentation probability and
relative depth. We reduce the uncertainty and benefit learning in
these two tasks. The experimental results demonstrate the superior
performance and robustness of our DFGAP. Our work provides a
new research paradigm in GAParts perception. We believe that our
work has the enormous potential to be applied in many areas of
embodied AI system.
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1 Introduction
Generalizable object perception and manipulation is a fundamental
task for developing various embodied artificial intelligence sys-
tems [1, 8, 24, 37? ]. Different from instance-level or category-level
object analysis, generalizable object perception requires the agent
to understand cross-category parts and their corresponding oper-
ational functions from an unseen object category. In this context,
Geng et al. [6] introduce the concept of Generalizable and Ac-
tionable Parts (GAParts) which enables the model to focus on the
common parts of objects that exhibit similar affordance, which pro-
vides an innovative paradigm for generalizable object manipulation
investigation.

To solve the problem of GAParts segmentation and 6D pose
estimation task, existing approaches take RGB-D image or point
cloud as visual input and build a corresponding 3D vision process-
ing network [6, 13]. This solution may face several challenges: (1)
High-precision depth sensor is required when transferring these
methods from the simulation to the real world, while the current
depth camera might not satisfy this demand. (2) For these methods,
taking a single RGB image as input may bring two key issues: shape
variation and scale ambiguity. These challenges arise from the un-
certainty caused by the lack of depth data, making the estimation
of both rotation and translation an ill-posed problem.

In this paper, we aim to eliminate the limitation of relying on
depth information, and propose DFGAP, a novel framework for
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Figure 1: GAParts PerceptionTask. Given a singleRGB image,
we aim to acquire GAParts segmentation and per-GAPart
pose estimation, further generalize to other objects of various
category.

Depth-Free cross-category GAPart Perception. Due to the uncer-
tainty problem in modeling object shape and scale, our method
independently quantifies the uncertainties in both GAPart seg-
mentation and pose estimation stages, which enables depth-free
GAParts perception to realize superior performance compared to
those using depth information. Specifically, in the segmentation
stage, we use RollingUNet [23] as the backbone to extract global
features. The main challenge lies in the uncertainty of assigning
each pixel due to the lack of depth information. To address this, we
introduce a mixture probability model, which robustly and accu-
rately learns the segmentation of GAParts. This model quantifies
the probability that each pixel belongs to different components,
preventing unreasonable segmentation distributions. We employ a
mixture probability modeling branch to predict the distributionmap
based on a Gaussian distribution. Using the global features and the
mixture distribution map as input, we then apply a Mask-RCNN[9]
network to obtain the final GAPart segmentation.

In terms of pose estimation stage, current methods aim to reduce
ambiguity caused by the absence of depth and introduce additional
input or performing normalization to target object to resolve this
issue. But this strategy still faces the problems of shape variation
and scale ambiguity. Thus, we suggest directly estimating the rela-
tive distance to a predetermined depth by explicitly quantifying the
uncertainty of each GAPart’s depth with minimal external priors. In
detail, our DFGAP first extracts global features from the segmented
GAParts using the pre-trained DINOv2[25] as the backbone. Rather
than directly predicting the depth of each pixel, we propose predict-
ing a set of keypoints using a self-supervised method. Subsequently,
we estimate the depth of these predicted keypoints through another
self-supervised network. To enhance this process, we introduce
a spherical harmonic-based 3D encoding scheme to convert the
predicted depth information into high-dimensional features. Finally,
using both the encoded depth features and the global features, we
employ three parallel branches to independently predict the x-axis
rotation, y-axis rotation, and translation vector, thereby recovering
the complete 6D pose.

We evaluate our DFGAP in GAPartNet dataset, which is derived
from two well-known benchmarks PartNet-Mobility[32] and AKB-
48[38]. Extensive experiments show the superior performance of
DFGAP in GAPart segmentation and pose estimation tasks, com-
pared to RGB-D methods and depth-free methods. Based on the
high-quality GAPart perception results, we build a simple heuristic
object interaction policy for a robot arm with gripper. The demon-
strations illustrate with help of our DFGAP, the robot agent can
achieve generalizable object manipulation task in both the simula-
tion and the real world under a single RGB image input. We believe
that our work has the enormous potential to be applied in many
areas of embodied AI system.

In summary, our contributions can be concluded as follows:
• We propose a novel framework DFGAP, that first solves
depth-free GAPart perception task, enabling cross-category
object perception and eliminating the need for additional
depth sensors.

• Our DFGAP achieves uncertainty-quantified modeling in
both GAParts segmentation and pose estimation stage. For
segmentation stage, we propose a mixture probability mod-
eling that quantifies the probability of each pixel labels. For
pose estimation stage, we also design a method to mitigate
the uncertainty by using self-supervised keypoints learning.

• DFGAP shows superior performance in GAPart segmenta-
tion and pose estimation tasks compared to those containing
depth information. The perception results also help the robot
manipulate the object not only in the simulation but also in
the real world.

2 Related Works
2.1 Cross-Category Object Perception
As a downstream task of Embodied intelligence, object percep-
tion has been studied at both the instance level [26–28, 33] and
the category level [3, 4, 12, 17, 30, 38]. Although some previous
category-level methods [1, 7, 24] have certain generalizability on
unseen categories, cross-category object perception remains chal-
lenging and has not been fully explored. [37] proposes GenPose, a
novel solution that reframes category-level object pose estimation
as a conditional generative modeling task, and demonstrates con-
sistent and robust performance on symmetrical unseen categories.
Xu et al. propose CAPE [34], which aims to create a 2D pose esti-
mation model capable of detecting the pose of any class of object
given only a few samples with keypoint definition. To handle novel
object categories, especially articulated objects and movable parts,
Geng et al. propose to learn such cross-category skills via Generaliz-
able and Actionable Parts(GAParts) [6], which are generalizable in
both recognition and manipulation. PartSLIP[21] extends 3D part
segmentation leveraging pre-trained image-language models. [16]
proposes a framework named Affinity3D that intends to empower
semantic segmentation models to perceive novel samples by com-
bining the geometric separation in 3D and the zero-shot capabilities
of 2D models.
2.2 Depth-free Based Pose Estimation
In recent years, RGBD-based methods for category-level object
pose estimation have been fully explored [10, 14, 18, 30, 35, 39]. As
for depth-free methods, recent work has focused on dealing with
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the absence of depth, which presents scale ambiguity and shape
variation. Xu et al. combine a gradient-based fitting procedure
with a parametric neural image synthesis module, which could
implicitly represent the appearance, shape and pose of entire object
categories for the pure RGB case [2]. Fan et al. innovate OLD-Net, a
depth-free model that predicts the pose via estimating Normalized
Object Coordinate Space (NOCS) coordinates, while incorporating
global position hints and shape priors [5]. Although this method
establishes 3D-3D correspondences by coordinates prediction and
metric depth estimation, scale ambiguity is not accounted for in this
method. Another method is introduced by [31], which proposes a
novel pipeline that decouples the 6D pose and size estimation. Inlier
2D-3D correspondence and metric scale recovery are established
by using a pre-trained monocular estimator. Zhang et al. propose
Lapose [40], a novel framework that models the shape of the object
as the Laplacian mixture model for pose estimation. By representing
each point as a probabilistic distribution, the shape uncertainty
could be explicitly quantified.

3 Problem Formulation
Following the definition of GAPart in GAPartNet, the overview of
our framework and problem formulation is as follows:

Given a single RGB image containing an object of a particular
category 𝐼 ∈ R𝐻×𝑊 ×3, where H and W denote the height and
width of the input image. We assume that the object in the image
contains 𝐿 GAParts, with part labels ranging from {1, . . . , 𝐿}.Our
GAParts segmentation framework aims to acquire the final per-
GAParts segmentation 𝑆𝑘 . 𝑆𝑘 ∈ {1, . . . , 𝐿} denotes the pixel-wise
instance segmentation label. With these segmented GAPart, our
pose estimation framework is a response to precisely predicting
the 6 DoF pose𝑇𝑘 for the 𝑘-th GAPart, including 3 DoF rotation 𝑅𝑘
and 3 DoF translation 𝑡𝑘 , where 𝑘 ranges from {1, . . . , 𝐿}.

4 Methods
4.1 GAParts Segmentation
4.1.1 Segmentation Motivation and Overview. With the in-
put image 𝐼 , the aim of our segmentation network is to obtain the
final pixel-wise GAParts segmentation 𝑆𝑘 . Several previous works
have demonstrated the applications of probability modeling in mul-
tiple perception and vision tasks. As for segmentation, distributing
the pixel-wise segmentation label, especially for those closed to
different GAParts, is a highly uncertain question which is suitable
for solving through probability modeling. Additionally, we notice
that, normally, the final segmentation results are somewhat unrea-
sonable and unbalanced in terms of spatial distribution. Therefore,
we introduce this method to reduce the uncertainty in the seg-
mentation results as well as to make the GAParts segmentation
results more reasonably distributed. Firstly, we leverage a backbone
to extract global pixel-wise features F𝑔𝑙𝑜𝑏𝑎𝑙 . Then by modeling a
probability distribution map, we obtain F𝑝𝑟𝑜𝑏 . Finally, we concate-
nate the dual stream output F𝑔𝑙𝑜𝑏𝑎𝑙 and F𝑝𝑟𝑜𝑏 , as input to a Mask
RCNN network to predict the final GAParts segmentation 𝑆𝑘 .

4.1.2 Mixture Probability Modeling. Given a pixel-wise global
feature extracted from the backbone, we first attach a simple net-
work to encode normalized coordinate information in the feature

map. Then, to model the mixture probability distribution map, fol-
lowing some previous works, we design a lightweight network
to estimate a set of gaussian mixture parameters (𝜇𝑘 , 𝜎𝑘 ,𝜌𝑘 ) for 𝑘
parts. Moreover, differing from previous approaches, we also esti-
mate the mixture weight 𝜋𝑘 and the background probability 𝑃𝑏𝑔 ,
this is motivated by the following two considerations. On the one
hand, we notice that a simple estimation of distribution center 𝜇𝑘
and distribution scale 𝜎2

𝑘
may lead to uncertainty in final probabil-

ity map modeling , causing a high probability that the probability
map result will collapse globally as the background. On the other
hand, since most areas of the input RGB image consist of mean-
ingless background, separately modeling the pixel-wise probability
distribution of the background helps to better distinguish objects
from the background, thereby reducing uncertainty when modeling
object-associated regions. We attach an independent branch for the
estimation of each parameter. To ensure rationality, we make some
minor adjustments to estimated parameters. Specifically, we apply
an exponential transformation to the parameter 𝜇𝑘 , in order to en-
sure it is positive, and apply a sigmoid function to the parameter
𝜎2
𝑘
in order to restrict its range to (0, 1).
We generate the pixel-wise mixture probability distribution with

predicted gaussian parameters. More detailed, firstly, for each pixel
𝑖 in the 𝑘-th GAPart, we calculate its normalized offset relative to
gaussian distribution center 𝜇𝑘,𝑥 and 𝜇𝑘,𝑦 as in:

d𝑥,𝑖 =
𝑥𝑖 − 𝜇𝑥,𝑘
𝜎𝑥,𝑘

, d𝑦,𝑖 =
𝑦𝑖 − 𝜇𝑦,𝑘
𝜎𝑦,𝑘

(1)

Where d𝑥,𝑖 and d𝑦,𝑖 denote normalized offset in x and y direc-
tions, and (𝑥𝑖 , 𝑦𝑖 ) denotes the 2d coordinate of pixel 𝑖 in image
𝐼 . Then, we generate probability of each pixel by calculating 2D
gaussian density function, which can be defined as:

𝑧𝑖 =
𝑑2
𝑥,𝑖

+ 𝑑2
𝑦,𝑖

− 2𝜌𝑘𝑑𝑥,𝑖𝑑𝑦,𝑖

2
(
1 − 𝜌2

𝑘

) (2)

𝑝 (𝑥𝑖 , 𝑦𝑖 ) =
𝑒−𝑧𝑖

2𝜋𝜎𝑥,𝑘𝜎𝑦,𝑘
√︃

1 − 𝜌2
𝑘

(3)

Finally, we use the predicted mixture weight 𝜋𝑘 to modify the
𝑝 (𝑥𝑖 , 𝑦𝑖 ) to obtain the final probability as follows:

𝑝𝑖,𝑘 = 𝜋𝑘𝑝 (𝑥𝑖 , 𝑦𝑖 ) (4)
Within the pixel-wise probability 𝑝𝑖,𝑘 , we can generate a proba-

bility distribution 𝑃𝑘 of 𝑘−𝑡ℎ GAPart. In addition, by concatenating
the k gaussian probability distribution maps and the background
probability map 𝑃𝑏𝑔 we have obtained, we achieve the final gauss-
ian mixture probability distribution map 𝑃 . Finally, we attach a
convolutional layer to adjust 𝑃 to probability features F𝑔𝑙𝑜𝑏𝑎𝑙 .

4.1.3 Loss Function. We design a set of combined loss functions
to better supervise the learning of gaussian mixture probability
distribution. Firstly, we follow the previous work to employ stan-
dard gaussian negative log-likelihood loss (NLL) to supervise the
predicted parameters (𝜇𝑘 , 𝜎𝑘 ) for the 𝑘 − 𝑡ℎ GAPart as in:

L𝑝𝑎𝑟𝑎𝑚 =

𝐿∑︁
𝑘=1

𝜆𝑘




𝜇𝑘 − 𝑐𝑘𝑔𝑡



2

2𝜎2
𝑘

+ 𝑙𝑜𝑔(𝜎𝑘 ) (5)

Please note that 𝑐𝑘𝑔𝑡 heremeans the ground truth geometry center
of the 𝑘 − 𝑡ℎ GAPart, 𝜆𝑘 is pre-defined hyper-parameter.
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Figure 2: An Overview of Our framework We firstly predict per-GAPart segmentation by modeling the mixture probability
distribution.(blue section). Then, we design three key components to estimate the per-GAPart 6 Dof pose. (green section)

Then, we encourage the predicted 𝜋𝑘 close to the ground truth
distribution of the 𝑘 − 𝑡ℎ GAPart. To achieve this target, we first
obtain the normalized distribution ratio as ground truth 𝜋𝑘𝑔𝑡 of the
𝑘 − 𝑡ℎ GAPart by calculating the number of pixels on the input
image 𝐼 . In addition, we spatially average the predicted 𝜋𝑘 . Finally,
we take Kullback-Leibler divergence (KL divergence) to force the
spatially consistent of 𝜋𝑘𝑔𝑡 and 𝜋𝑘 . Therefore, the global mixture
weight is supervised by following loss item:

L𝜋 =

𝐿∑︁
𝑘=1

𝐾𝐿(𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 ( 𝜋𝑘
𝑇𝑘

), 𝜋𝑘𝑔𝑡 ) (6)

Where KL denotes the KL divergence, 𝑇𝑘 is a hyper-parameter.
To refine the probability distribution, especially for slight GAParts,

we also apply pixel-wise supervision between predicted probabil-
ity distribution. Here we take focal loss[15] since its outstanding
performance in imbalanced categories. The loss item is as follows:

LFL = −𝛼 (1 − 𝑆𝑘 )𝛾 𝑙𝑜𝑔(𝑆𝑘 ) (7)
In summary, the final GAParts segmentation loss is a linear

weighted combination of all loss items L𝑝𝑎𝑟𝑎𝑚 , L𝜋 and LFL
4.2 GAParts Pose Estimation
4.2.1 Pose Estimation Motivation and Overview. Given the
predicted segmentation label 𝑆𝑘 , we extract the image 𝐼𝑘 which
contains only the 𝑘 − 𝑡ℎ GAPart. we aim to obtain the 6D pose, in-
cluding rotation 𝑅𝑘 and𝑇𝑘 by our pose estimation framework. Most
depth-free pose estimation methods focus on reducing the ambigu-
ity caused by the absence of depth data. Typically,by introducing
additional input or performing normalization to target object to
resolve this issue. However, it does not solve two common issues,
shape variation and scale ambiguity, in depth-free pose estimation
essentially, but it introduces additional uncertainty. Therefore, we
suggest returning to the essence of the problem and propose to
directly estimate the relative distance to a predetermined depth. To

Figure 3: Spherical Harmonic Encoding . First: We trans-
form the keypoints from a XYZ system to a spherical system;
Second: We take a set of spherical harmonics and radial basis
functions to encode direction and distance respectively.

begin with, we leverage DINOv2[25] as the backbone to extract
global features. Then, we attach two self-supervised networks to
predict a group of keypoints and their corresponding depth. After
that, we designed a spherical harmonic based encoding scheme to
acquire the high-dimension features. Finally, our pose estimation
network predicts the 6D pose (𝑅𝑘 ,𝑇𝑘 ) for the 𝑘 − 𝑡ℎ GAPart.
4.2.2 Self-Supervised keypoints prediction . As we have dis-
cussed above, we first attach a self-supervised network to pre-
dict a group of keypoints. We establish two principles. First, key-
points should cover the areas in the image where the pixel gradient
changes dramatically, as these areas are usually where the shape of
the object changes. Second, keypoints should be evenly distributed
on the surface of the object to ensure the keypoints are able to
represent the object globally.
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Our keypoints network take global feature F𝑘 , which is extracted
by DINOv2, as input, directly predict the normalized coordinate
of 2D keypoints 𝑃2𝐷

𝑘𝑝
. To achieve these objectives, we design the

following two loss items to promote the learning.
We calculate pixel-wise gradient for the input image 𝐼𝑘 and nor-

malize to (0,1) to obtain a gradient map𝐺𝑘 for the 𝑘−𝑡ℎ GAPart. For
each predicted keypoint 𝑝2𝐷

𝑖
∈ 𝑃2𝐷

𝑘𝑝
, 𝑖 ∈ [1, 𝑁 ], where 𝑁 denotes

the number of predicted keypoints. We minimize the following
item:

L𝑔𝑟𝑎𝑑 =
1
𝑁

𝑁∑︁
𝑖=1

[
1 −𝐺

(
𝑝2𝐷
𝑖

)]
(8)

To force the even covering, we calculate the normalized distance
between each pair of keypoints

(
𝑝2𝐷
𝑖
, 𝑝2𝐷

𝑗

)
, 𝑖, 𝑗 ∈ [1, 𝑁 ], and then

supervise the even distribution of keypoints through the following
loss item:

L𝑑𝑖𝑠𝑡 =
1

𝑁 (𝑁 − 1)

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1, 𝑗≠𝑖

[
𝑚𝑎𝑥

(
0, 𝛿 −




𝑝2𝐷
𝑖 − 𝑝2𝐷

𝑗





2

)]2
(9)

Please note that 𝛿 is a hyper-parameter, which means the mini-
mum distance allowed between two keypoints (𝑝2𝐷

𝑖
, 𝑝2𝐷

𝑗
). Finally,

our self-supervised keypoints loss function is a linear combination
of the two loss items mentioned above.
4.2.3 Self-Supervised keypoints depth estimation . Given pre-
dicted keypoints 𝑃2𝐷

𝑘𝑝
, we then attach a depth network to estimate

the point-wise relative distance to a predetermined depth. Specifi-
cally, we firstly extract corresponding keypoints feature F𝑘𝑝 from
global feature F𝑘 . then, taking F𝑘𝑝 as input, our depth network
estimate the relative distance 𝑍𝑘𝑝 as output. With the 𝑃2𝐷

𝑘𝑝
and 𝑍𝑘𝑝 ,

we can easily recover the 3D keypoint 𝑝3𝐷
𝑖

. To make the predicted
keypoint depth more reliable, we design three loss functions based
on geometric constraints.

When 2D keypoints are projected into 3D space through camera
intrinsic, if the predicted depth 𝑍𝑘𝑝 are precise, the geometry struc-
ture of keypoints should maintain relative stability. Specifically, we
define 𝑑3𝐷

𝑖 𝑗
as the distance between keypoints 𝑝3𝐷

𝑖
and 𝑝3𝐷

𝑗
, 𝑑2𝐷

𝑖𝑘

as the distance between keypoints 𝑝2𝐷
𝑖

and 𝑝2𝐷
𝑗

. The 3D distance
should be proportional to its 2D distance on the normalized camera
plane. In other words, the ratio between two distances , we define
as:

𝑟𝑖 𝑗 =
𝑑3𝐷
𝑖 𝑗

𝑑2𝐷
𝑖𝑘

+ 𝜖
(10)

should be approximately equal to the average depth 𝑧 of the
keypoints, which defined as:

𝑧 =
1
𝑁

𝑁∑︁
𝑖=1

𝑧𝑖 (11)

Please note that in order to avoid dividing by zero, we add a very
small constant 𝜖 to the denominator, normally 1e-6.

Relying on this geometric constraint, we attach the geometry-
limitation loss as follows to supervise the learning of keypoints’
depth.

L𝑔𝑒𝑜 =
2

𝑁 (𝑁 − 1)
∑︁
𝑖< 𝑗

��𝑟𝑖 𝑗 − 𝑧�� (12)

All symbols here have the same meaning with those we have
mentioned above.

Additionally, based on a universal consensus that the depth of
keypoints that are closer should be close. We design the depth
smoothness loss item as follow:

L𝑠𝑚𝑜𝑜𝑡ℎ =
2

𝑁 (𝑁 − 1)
∑︁
𝑖< 𝑗

𝜔𝑖 𝑗
��ℓ𝑖 − ℓ𝑗 �� (13)

Here we take ℓ𝑖 = 𝑙𝑜𝑔(𝑧𝑖 + 𝛿) to perform logarithmic smoothing
to the depth 𝑧𝑖 . And 𝜔𝑖 𝑗 is used to control the loss weight of point
pairs (𝑝𝑖 , 𝑝 𝑗 )

However, another obvious fact is that keypoints located at the
edge of object, even if they are close in distance, will experience
drastic changes in depth. Based on that, we must take into account
regions with significant gradient changes in the image, since they
normally representative the edge of the object. Therefore, we firstly
compute the gradient in x-axis ∇𝑥,𝑖 and in y-axis ∇𝑦,𝑖 for each
keypoint 𝑝2𝐷

𝑖
, then minimize the following loss items:

L𝑒𝑑𝑔𝑒 =
1
𝑁

𝑁∑︁
𝑖=1

𝜔𝑖
(��∇𝑥,𝑖𝑧𝑖

�� + ��∇𝑦,𝑖𝑧𝑖
��) (14)

Also , 𝜔𝑖 here is a edge weight, and 𝛼 is a hyper-parameter that
regulates the rate of edge weight decay. In summary, the final loss
function of our self-supervised depth estimation is the combination
of all loss item mentioned above.
4.2.4 3D Encoding Based on Spherical Harmonic Function.
As we mentioned above, obtaining the predicted depth 𝑍𝑘𝑝 , we can
easily recover the 3D coordinate then obtain the 3D keypoints 𝑃3𝐷

𝑘𝑝
.

In order to enable the network to utilize the synthesized 3D position
informationmore efficiently, a common approach is designing an en-
coding scheme to encode the position into high-dimension features.
Previous work’s achievements inspire us to consider the pose learn-
ing,especially for rotation learning, in spherical coordinate space
rather than the traditional xyz coordinate space. Since the spherical
coordinate space represents direction and distance more intuitively
using two angles (𝜑, 𝜃 ) and a radial distance 𝜌 , we propose using
the spherical harmonic function to encode 3D spherical coordinates
into high-dimensional features. This choice is due to its excellent
properties in rotation prediction tasks. Mathematically speaking,
spherical harmonics possess strict orthogonality, completeness, and
rotational equivariance, providing a set of continuous, smooth, and
rotation-equivariant basis functions that can encode an object’s
rotation information into high-dimensional features. Even when
rotation angles approach the boundaries (for instance, near 0 or 𝜋 ),
the encoded output remains varying smoothly. This characteristic
effectively mitigates the training difficulties caused by the disconti-
nuities inherent in the topology of SO(3) (such as singularities and
double-cover issues), thereby facilitating robust learning of rota-
tion. The process is shown as Fig.3. Follow the above instruction,
given a 3D keypoint 𝑝3𝐷

𝑖
= (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 ) ∈ 𝑃3𝐷

𝑘𝑝
, we first transform

the coordinate into a spherical coordinate space by following the
formula: 

𝜌 =

√︃
𝑥2
𝑖
+ 𝑦2

𝑖
+ 𝑧2

𝑖

𝜃 = arccos
(
𝑧
𝜌

)
𝜙 = arctan

(
𝑦
𝑥

) (15)

We use Gaussian radial basis functions (rbf) to encode distances
𝜌 . Specifically, firstly, we employ a set of 𝑁𝑟𝑏𝑓 Gaussian RBFs
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Table 1: GAParts Segmentation Result

Method Ln.F.HI Rd.F.HI Hg.HI Hg.Ld Sd.Ld Sd.Bn Sd.Dw Hg.Dr Hg.Kb Avg.AP Avg.AP50

Seen

PointGroup[11] 86.1 23.0 84.6 80.0 88.3 49.3 62.6 92.8 34.6 57.3 66.8
SoftGroup[29] 57.8 93.6 81.2 76.0 89.3 25.2 50.8 93.9 51.5 58.5 68.8
AutoGPart[22] 86.8 20.3 87.7 79.7 89.4 62.3 61.6 92.5 16.7 57.2 66.3
GAPartNet[6] 89.2 54.9 90.4 84.8 89.8 66.7 67.2 94.7 52.9 67.6 76.5
CSS-GASP[36] 90.5 57.5 90.3 81.6 90.8 54.5 66.1 94.8 63.1 65.5 76.6
GASEM[20] 65.1 69.4 58.6 62.9 66.1 17.2 75.3 67.9 58.7 52.3 59.6
DFGAP 90.8 65.7 92.1 85.9 95.2 68.7 95.5 91.5 70.1 74.8 83.2

Unseen

PointGroup[11] 32.4 9.8 2.1 26.8 0.0 42.6 57.0 63.9 1.7 21.9 26.3
SoftGroup[29] 25.8 5.0 0.4 33.9 0.6 50.9 51.2 69.0 12.1 22.0 27.7
AutoGPart[22] 45.6 4.8 3.1 34.3 0.0 47.8 64.1 63.1 11.5 25.7 30.5
GAPartNet[6] 45.6 40.0 3.1 40.2 5.0 49.1 64.2 69.1 23.4 32.0 37.2
CSS-GASP[36] 48.2 42.1 1.1 57.4 0.1 41.9 65.7 69.3 31.5 31.1 38.9
GASEM[20] 30.9 26.0 3.4 41.7 3.4 25.6 46.5 53.3 11.7 28.9 34.2
DFGAP 50.7 47.2 2.3 53.8 7.3 51.5 69.1 72.6 31.8 36.2 42.8

Results of Part Segmentation in terms of Per-GAPart-class AP50 (%), Average AP50 (%), and Average AP (%). Ln.=Line. F.=Fixed. Rd.=Round. Hg.=Hinge. Hl.=Handle.
Sd.=Slider. Ld.=Lid. Bn.=Button. Dw.=Drawer. Dr.=Door. Kb.=Knob.

Table 2: GAParts Pose Estimation Result

Method Modalities Ln.F.HI Rd.F.HI Hg.HI Hg.Ld Sd.Ld Sd.Bn Sd.Dw Hg.Dr Hg.Kb Avg

Seen

Rotation(°)

GAPartNet[6] RGB-D 10.39 12.74 10.15 7.72 7.82 2.41 5.03 8.46 4.74 7.72
CSS-GASP[36] RGB-D 5.33 5.46 7.61 6.51 6.52 4.67 1.51 6.31 4.22 5.35
GASEM[20] RGB-D 17.11 11.96 9.42 6.93 4.45 9.11 9.30 8.44 5.31 9.11
LaPose[40] RGB 13.69 8.82 9.38 15.12 5.97 10.65 6.14 14.98 7.73 10.28
𝑅2-Art[13] RGB 13.76 18.57 9.24 11.89 8.82 14.63 7.79 26.38 14.13 13.91
DFGAP RGB 7.25 0.71 4.48 6.28 4.21 0.78 1.41 5.67 10.65 4.60

Translation(cm)

GAPartNet[6] RGB-D 0.015 0.078 0.039 0.038 0.032 0.009 0.075 0.038 0.010 0.037
CSS-GASP[36] RGB-D 0.012 0.076 0.037 0.022 0.021 0.005 0.042 0.025 0.011 0.028
GASEM[20] RGB-D 0.015 0.051 0.031 0.080 0.023 0.005 0.069 0.047 0.005 0.036
LaPose[40] RGB 0.018 0.107 0.046 0.053 0.028 0.011 0.042 0.028 0.023 0.040
𝑅2-Art[13] RGB 0.024 0.127 0.054 0.063 0.041 0.019 0.079 0.066 0.038 0.057
DFGAP RGB 0.011 0.036 0.028 0.021 0.018 0.007 0.034 0.024 0.004 0.020

Unseen

Rotation(°)

GAPartNet[6] RGB-D 36.54 19.89 64.31 19.18 29.17 9.21 14.62 38.57 16.89 27.60
CSS-GASP[36] RGB-D 23.85 12.79 21.23 14.34 17.07 6.51 3.57 18.09 18.37 15.09
GASEM[20] RGB-D 33.85 27.41 57.66 19.63 24.04 8.28 20.72 22.62 12.86 25.23
LaPose[40] RGB 25.74 15.67 24.87 19.95 15.13 12.44 10.18 28.79 17.68 18.94
𝑅2-Art[13] RGB 47.38 37.88 45.21 26.87 32.19 18.28 22.37 40.05 14.55 31.64
DFGAP RGB 18.74 2.14 17.99 12.76 10.75 7.64 2.87 16.95 14.42 11.58

Translation(cm)

GAPartNet[6] RGB-D 0.164 0.091 0.539 0.415 0.076 0.042 0.318 0.131 0.038 0.202
CSS-GASP[36] RGB-D 0.138 0.078 0.242 0.345 0.011 0.026 0.027 0.045 0.026 0.104
GASEM[20] RGB-D 0.226 0.052 0.261 0.294 0.385 0.014 0.165 0.087 0.019 0.167
LaPose[40] RGB 0.278 0.107 0.296 0.165 0.283 0.022 0.219 0.067 0.018 0.162
𝑅2-Art[13] RGB 0.341 0.127 0.237 0.228 0.459 0.036 0.522 0.203 0.083 0.248
DFGAP RGB 0.109 0.063 0.187 0.197 0.046 0.011 0.023 0.037 0.016 0.077

Results of GAParts Pose estimation in terms of per-part-class Rotation error and translation error.. We use degree error (noted as °) and distance error (noted as cm) as
metrics.

and define a set of centers {𝑐𝑖 }
𝑁𝑟𝑏𝑓

𝑖=1 uniformly spaced in a pre-
defined interval (e.g. [0,10]). For each center 𝑐𝑖 , we compute the
RBF response as:

𝜙𝑖 (𝜌) = 𝑒𝑥𝑝
(
− (𝜌 − 𝑐𝑖 )2

2𝜎2

)
(16)

Where 𝜎 is a pre-determined fixed standard deviation (e.g. 1.0).
Then, we apply a learned linear transformation𝑊𝜌 ∈ R𝑑𝜌×𝑁𝑟𝑏𝑓 as:

F𝜌 =𝑊𝜌 ·


𝜙1 (𝜌)
𝜙2 (𝜌)
· · ·

𝜙𝑁𝑟𝑏𝑓
(𝜌)

 (17)

resulting in a 𝑑𝜌 -dimensional encoding feature.
For two angle 𝜃 and 𝜙 , we take spherical harmonics to jointly

encode the angular information instead of independently encod-
ing each angle. Given a pair of angle (𝜃, 𝜙). We firstly define real
spherical harmonics function as the following formulas:


𝑌𝑚
𝑙

(𝜃, 𝜙) =
√

2𝑁𝑚
𝑙
𝑃𝑚
𝑙

(cos𝜃 ) cos (𝑚𝜙) , 𝑚 > 0
𝑌 −𝑚
𝑙

(𝜃, 𝜙) =
√

2𝑁𝑚
𝑙
𝑃𝑚
𝑙

(cos𝜃 ) sin (𝑚𝜙) , 𝑚 > 0
𝑌 0
𝑙
(𝜃, 𝜙) = 𝑁 0

𝑙
𝑃0
𝑙
(cos𝜃 )

(18)
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Figure 4: Qualitative result of GAParts segmentation. We compare our DFGAP with our ablated versions since SOTA methods
require 3D inputs that hold different settings from ours. More qualitative results can be found in supplementary materials.

Figure 5: Qualitative results on GAParts pose estimation. More qualitative results can be found in supplementary materials.

We explain all parameters below. 𝑙 is degree which always greater
than 0. 𝑚 is order, always meet the condition of −𝑙 ≤ 𝑚 ≤ 𝑙 .
𝑃𝑚
𝑙

(cos𝜃 ) is Associated Legendre polynomials, and 𝑁𝑚
𝑙

is an nor-
malized constant. We set a maximum degree 𝐿𝑚𝑎𝑥 = 3, in that case,
there are (3 + 1)2 = 16 real-valued spherical harmonics for each
point 𝑝2𝐷

𝑖
with angles 𝜃 and 𝜙 . We yield a vector 𝑌 (𝜃, 𝜙) ∈ R16,

and, similarly, we apply the vector 𝑌 (𝜃, 𝜙) with a learned linear
transformation𝑊𝑠ℎ ∈ R(𝑑𝜃+𝑑𝜌 )×16 as in:

F𝑎𝑛𝑔 =𝑊𝑠ℎ · 𝑌 (𝜃, 𝜙) (19)

to producing a (𝑑𝜃 + 𝑑𝜙 )-dimensional angular encoding feature
F𝑎𝑛𝑔 . Finally, the distance encoding F𝜌 and the angular encoding
F𝑎𝑛𝑔 are concatenated along the feature dimension to yield the
overall positional encoding as follow:

F 𝐸𝑛𝑐
𝑘𝑝

=
[
F𝜌 | | F𝑎𝑛𝑔

]
∈ R𝑑𝜌+𝑑𝜃+𝑑𝜙 (20)

Please note that here 𝑑𝜌 , 𝑑𝜃 and 𝑑𝜙 are hyper-parameters. We
set 32 for each parameter and the final dimension is 96. With F 𝐸𝑛𝑐

𝑘𝑝
,

we then concatenate it with global feature F𝑘 as input of pose
estimation network.

5 Experiments
5.1 Experiment Setup
Data Preparation We train and evaluate our framework on the
GAPartNet dataset [? ], which contains 9 GAPart classes (such as
lids, handles, etc.) across 27 object categories. The dataset provides
part-level annotations for 8,489 instances of parts from 1,166 objects,
collected from PartNet-Mobility[32] and AKB-48[19].

Evaluation Metrics For part segmentation, we evaluate per-
formance using average precision (AP). Specifically, we use AP50,
which is the average precision computed with an Intersection over
Union (IoU) threshold of 50%. In addition, we also report the overall
average precision (AP) as a supplementary metric. For pose esti-
mation, we use rotation error (in degrees) and translation error (in
centimeters). Particularly, for fair comparison, when calculating
the translation error for RGB-based methods, we calculate the pixel
offset in the 2D RGB image. Then, taking the ground truth depth,
we transform it into an error in centimeters.

Evaluation Metrics The two modules, GAParts segmentation
and pose estimation are trained separately in our training schedule.
For GAParts segmentation, the size of input RGB image is 800×800.
For pose estimation, the input image is resized as 224× 224 to meet
the requirements of DINOv2. For GAParts segmentation, we use
RollingUNet as backbone, codes come from the official implement.
For pose estimation we use pretrained vits14 model of DINOv2 as
backbone. The total training epoch are 600, 300 for the two modules.
Training and validation batch size are 16, 32 respectively. All the
experiment are implemented on four NVIDIA GeForce RTX 4090
GPUs with 24GB memory.
5.2 Experiment on GAParts Segmentation
We report the results of DFGAP part segmentation evaluated on the
GAPartNet dataset that are illustrated in Table.1. DFGAP exceeds
other methods by a large margin in multiple metrics. Compared
with the GAPartNet baseline [6] in the categories seen, our DF-
GAP demonstrates an improvement in the segmentation of the vast
majority of part categories, with absolute 7.2% average AP improve-
ment and 6.7% average AP50 improvement. In unseen categories,
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Table 3: Mixture Probability Distribution Modeling Analysis for GAParts segmentation

Use MPM Ln.F.HI Rd.F.HI Hg.HI Hg.Ld Sd.Ld Sd.Bn Sd.Dw Hg.Dr Hg.Kb Avg.AP Avg.AP50

Seen ✘ 85.1 61.7 86.7 78.2 91.7 50.8 82.4 89.3 70.5 69.7 77.3
✔ 90.8 65.7 92.1 85.9 95.2 68.7 95.5 91.5 70.1 74.8 83.2

Unseen ✘ 46.7 45.2 1.2 48.7 6.9 44.5 53.8 69.3 24.4 31.3 37.8
✔ 50.7 47.2 2.3 53.8 7.3 50.9 69.1 72.6 31.8 36.2 42.8

Results of Part Segmentation in terms of Per-GAPart-class AP50 (%), Average AP50 (%), and Average AP (%). Ln.=Line. F.=Fixed. Rd.=Round. Hg.=Hinge. Hl.=Handle.
Sd.=Slider. Ld.=Lid. Bn.=Button. Dw.=Drawer. Dr.=Door. Kb.=Knob.

our method achieves 36.2% and 42.8% for AP and AP50, absolutely
4.2% and 5.6% better than the baseline. In particular, in the cate-
gories seen, for the GAParts Slider Drawer and Hinge Knob, our
method performs better than the baseline with more than relative
30% average AP50 improvement (42.1% and 32.5% respectively).
5.3 Experiment on Pose Estimation
The experimental results of pose estimation are presented in Tab.2,
our method significantly outperforms the RGB-based baseline meth-
ods [13] in the vast majority of GAParts in the GAPartNet dataset.
Compared with RGB-D based methods in seen categories, our ap-
proach achieves superior performance over the second-best method
in most GAPart categories. Specifically, for Round Fixed Handle,
Slider Button and Hinge Handle, our approach reduces relative
rotation errors by over 40% (87.0%, 67.6% and 41.1% respectively).
In unseen categories, DFGAP (Ours) outperforms the second-best
method in Round Fixed Handle, Slide Lid, and Line Fixed Handle by
reducing rotation errors by more than 20% relative (83.3%, 28.9%,
and 21.4% respectively). For translation, our method also outper-
forms the GAPartNet baseline [6] on all kinds of GAParts in both
seen and unseen categories. The qualitative results are shown in
Fig.4 and Fig.5
Table 4: Three Key Components for Pose Estimation Analysis

K.P D.E S.H.E Seen(°) Unseen(°)
Avg.Rot Avg.Trans Avg.Rot Avg.Trans.

✘ ✘ ✘ 14.82 0.214 33.47 0.435
✘ ✔ ✔ 6.77 0.078 18.29 0.177
✔ ✔ ✘ 8.92 0.137 22.17 0.341
✔ ✔ ✔ 4.74 0.021 12.59 0.076

The left three columns stand for using self-supervised keypoints prediction,
self-supervised depth estimation and spherical harmonic encoding or not. Please note
that K.P = keypoints prediction, D.E = depth estimation, S.H.E = spherical harmonic
encoding

5.4 Ablation Studies
Mixture Probability Distribution Modeling Analysis

We analyze the effectiveness of our mixture probability modeling
(MPM) for all categories GAParts segmentation in Table.3. As can
be observed, Remove the module of MPM, for seen categories, the
average AP and AP50 absolutely decrease 5.1% and 5.9% respec-
tively. For the unseen category, the average AP and AP50 absolutely
decrease 4.9% and 5.0% respectively

Three Key Components for Pose Estimation Analysis
We report the ablation studies for the effect of three key compo-

nents as shown in Table.4. Compared to the method of removing
all three components, our method reduces rotation errors by over
10° in both seen and unseen categories. The experimental result
further demonstrate the contribution of each component.

Spherical Harmonic Encoding Analysis
Please refer to Table.5 for quantitative comparison of our de-

signed spherical harmonic encoding for pose estimation. We can
have the view that coding in spherical coordinate is better than
XYZ coordinate, also, spherical harmonic based coding method is
far superior than traditional cosine function based method. In sum-
mary, the experimental results demonstrate the well performance
of our designed spherical harmonic encoding scheme.

Table 5: Spherical Harmonic Encoding Analysis

Encoding Coord sys Seen(°) Unseen(°)
Avg.Rot Avg.Trans Avg.Rot Avg.Trans.

MLP / 9.71 0.225 23.85 0.385
C.F XYZ 7.08 0.119 17.75 0.254
C.F Spherical 6.23 0.064 17.19 0.128
S.H Spherical 4.74 0.021 12.59 0.076

The left two columns stand for different encoding scheme and different coordinate
system. Please note that Coord sys is short for coordinate system, and C.F = cosine
function encoding, S.H = spherical harmonic encoding.

5.5 Part-based Manipulation Results
We also present the qualitative manipulation results achieved by our
framework, along with comprehensive manipulation evaluations
conducted in both simulated and real-world environments. We set
four different kind of tasks, grasping handle, pushing button, open-
ing drawer and manipulating box. For simulation experiments, we
assess the performance using the predicted GAPart segmentation
and pose estimation results through SAPIEN [32]. For real-world
experiments, we use xArm and its grasp to validate the robustness
and precision of our framework in real-world interaction experi-
ments. Due to space limitations, we will give a detailed description
of our implement in the supplementary material.

6 Conclusion
In this paper, we propose a novel framework, DFGAP, toward pre-
cise and robust GAParts segmentation and pose estimation from
a single RGB image. From the perspective of reducing the uncer-
tainty in both tasks, we creatively address the depth-free GAPart
perception task. Specifically, we independently quantify the un-
certainty of segmentation probability for GAParts segmentation
and relative depth for pose estimation. Our DFGAP shows superior
performance on the GAPartNet dataset compared to various state-
of-the-art baseline methods. Multiple sound ablation experiments
prove the efficiency and robustness of our proposed methods. Our
work has enormous potential in various robot interaction tasks. We
firmly believe that our work can be applied in many embodied AI
scenarios such as robot manipulation, augmented reality and 3D
scene understanding.
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