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A B S T R A C T

Fusarium Head Blight (FHB) is a devastating disease of wheat worldwide. It is an explosive epidemic disease that 
can severely reduce or even fail wheat production. Estimating the disease ear rate and disease severity is crucial 
for effective plant protection. Manual assessment is labor-intensive and time-consuming. Accurately and quickly 
segmenting wheat ears and areas affected by Fusarium head blight (FHB) in complex field environments is 
essential for quantitative assessment of wheat trait phenotypes and FHB in wheat plants. This paper presents 
DeepFHB, an automated method for efficiently detecting, locating, and segmenting dense wheat spikes and 
diseased areas in digital images captured under natural field conditions. The experiment consists of three steps: 
Firstly, the process begins by generating initial coarse-grained mask predictions at lower resolutions to provide a 
rough segmentation. Secondly, a quadtree-based method is employed to identify and refine multi-scale incon
sistent regions. Finally, a transformer-based refinement network is introduced to predict highly accurate instance 
segmentation masks. The results demonstrate that the DeepFHB algorithm outperforms traditional methods in 
detecting and segmenting diseased areas. Our DeepFHB model achieves state-of-the-art single-model results of 
64.408 box AP and 64.966 mask AP on the FHB-SA dataset. This study is capable of rapidly and accurately 
segmenting wheat spikes and wheat scab lesions in agricultural scenarios with high field density, high crop 
occlusion, and high background interference. This provides a foundation for subsequent targeted research to 
assist agricultural workers in assessing the severity of wheat diseases.

1. Introduction

Wheat is one of the most important cereal crops in the world (Zhang 
et al., 2022a), with over 40 % of the global population relying on it as a 
primary food source. Ensuring the steady increase in wheat production 
is essential for global food security. Wheat production is constantly 
threatened by various diseases, pest infestations, and abiotic stress. 
Among these, Fusarium head blight, commonly referred to as scab, is a 
prevalent affliction in wheat caused by fungi such as Fusarium grami
nearum, which significantly impacts wheat yield (Gao et al., 2022). The 
disease can reduce wheat production by infecting the wheat spikes 
during the flowering stage, leading to red or black mold spots during the 
grain-filling and ripening stages. Fusarium head blight also produces 

mycotoxins, which can cause food poisoning in humans and animals 
when consumed. This disease is particularly severe in the Yangtze and 
Huai River regions of China. The most common method for monitoring 
and identifying Fusarium head blight (FHB) is manual observation. This 
traditional assessment method is time-consuming, labor-intensive, and 
prone to human error (Zhang et al., 2019). Therefore, there is an urgent 
need for more effective and precise methods to evaluate diseases in 
wheat cultivation. Fine-grained understanding and analysis for wheat 
ear disease assessment and accurate yield estimation are necessary. 
Refining segmentation of wheat spikes and areas affected by FHB is 
crucial for quantifying wheat traits and assessing the impact of FHB on 
wheat plants.

Current research on wheat primarily focused on the identification of 
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wheat ear diseases, wheat head detection, and counting (Gao et al., 
2024; Liu et al., 2022; Zhao et al., 2023; Zhou et al., 2022). While 
hyperspectral imaging has proven highly effective for early detection of 
diseases and pests, capturing subtle physiological and biochemical 
changes in plant leaves (Jin et al., 2018), it faces significant limitations. 
The large volume of hyperspectral data requires complex processing and 
analysis, posing challenges for real-time application in rapid-response 
scenarios. The necessity for specific field equipment like calibration 
plates and the high costs associated further restrict its widespread 
adoption. With the rapid development of deep learning technology, its 
applications in various fields (Garg et al., 2021) have shown remarkable 
results. Deep learning offers a promising non-destructive alternative for 
detecting wheat heads and diseases. It has emerged as a key tool in 
agricultural applications, particularly for identifying wheat ear diseases, 
an area that has seen considerable research interest. For instance, Bao 
et al. (2021) proposed a lightweight convolutional neural network 
(CNN) framework for automated detection of wheat ear diseases like 
glume blotch and scab under natural field conditions. Gu et al. (2021)
developed a feature fusion approach that integrates deep convolutional 
features with shallow features extracted from high-resolution digital 
RGB images of FHB at various disease stages, tailored for controlled 
indoor conditions. Despite the advancements, the detection in complex 
backgrounds remains challenging, typically requiring high-throughput 
capabilities not afforded by traditional methods. Zhang et al. (2022a)
advanced this by integrating the Yolov5 object detection network with 
advanced techniques to evaluate the damage under field conditions 
effectively. Subsequently, they introduced a Rotating YOLO Wheat 
Detection network and a Simple Spatial Attention network, capable of 
detecting wheat head images with detection boxes of arbitrary orien
tation (Zhang et al., 2023). These studies (Sun et al., 2022; Yang et al., 
2021) though innovative, often rely on bounding box outputs which are 
insufficient for tasks like precise disease assessment and yield predic
tion, where detailed pixel-level segmentation is crucial. Recognizing this 
gap, some researchers (Ma et al., 2020) have applied semantic seg
mentation algorithms in field environments to segment wheat spikes, 
proposing a method based on semantic segmentation for pixel-level 
classification, aiming to achieve accurate segmentation of wheat 
spikes from canopy images captured in field conditions. However, 
mutual occlusion between wheat spikes, especially in densely planted 
scenarios, may prevent individual segmentation of wheat spikes. To 
accomplish counting tasks and separate clustered wheat spikes in se
mantic segmentation, it is necessary to combine other machine learning 
algorithms to distinguish different instances of wheat spikes (Zhang 
et al., 2021; Zhang et al., 2019). In summary, the afore-mentioned 
detection and segmentation networks exhibit the following issues: 
Firstly, detection networks aimed at directly obtaining the number of 
wheat spikes struggle to accurately segment Fusarium Head Blight 
(FHB) lesion areas. Secondly, Semantic segmentation network methods 
face challenges in directly obtaining the count of wheat spikes based on 
segmentation results.

Understanding these limitations is essential for developing more 
effective methods for wheat spike segmentation and disease detection. 
Overcoming these challenges may require integrating other technolo
gies or approaches. Precise pixel-level segmentation is crucial for tasks 
such as disease assessment and yield prediction in wheat management. 
Therefore, it is necessary to explore segmentation methods that can 
accurately determine the wheat spike area under real field conditions. 
Instance segmentation can accurately identify and separate different 
object instances within an image enabling precise counting of object 
instances. Previous researches has utilized instance segmentation for 
spike segmentation (Batin et al., 2023; Zhang et al., 2022b) and wheat 
disease segmentation (Gao et al., 2022; Qiu et al., 2019; Su et al., 2020). 
Zhang et al. (2022b) introduced a novel instance segmentation method, 
employing a Hybrid Task Cascade model, aimed at resolving the prob
lem of wheat spike detection. Batin et al. (2023) presented an instance 
segmentation approach, rooted in the Cascade Mask RCNN architecture, 

complemented by model enhancement and hyperparameter optimiza
tion for wheat spike segmentation and counting from field imagery. 
Accurately identifying wheat spikes against complex backgrounds is 
essential for obtaining image-derived wheat phenotype data, such as 
yield estimation and morphological characteristics of the spikes. 
Simultaneously, rapid and precise segmentation of wheat Fusarium 
Head Blight lesions is crucial for spike disease assessment. This assists 
agricultural workers in confirming the severity of wheat diseases and 
conducting subsequent targeted research. Su et al. (2020) developed a 
dual Mask-RCNN model for rapid segmentation of wheat spikes and FHB 
diseased areas. Gao et al. (2022) employed an automated tandem dual 
BlendMask deep learning framework, designed for segmentation of both 
the wheat spikes and diseased areas, to enable rapid assessment of dis
ease severity. Both of the above methods use a sequential working mode, 
where one must wait for the previous task to complete before starting 
the next one. This affects the overall efficiency of the segmentation. It 
has been observed through extensive experimentation that existing 
instance segmentation models, such as Mask R-CNN (He et al., 2017), 
Cascade Mask RCNN (Cai and Vasconcelos, 2018), HTC (Chen et al., 
2019), BlendMask (Chen et al., 2020), Swin Transformer (Liu et al., 
2021), YOLO (Wang et al., 2021), and others, are not suitable for per
forming high-throughput wheat spike segmentation and individual 
spike disease assessment tasks simultaneously. A fine-grained under
standing and analysis of wheat spike Fusarium Head Blight (FHB) is 
essential for wheat management, including disease assessment and yield 
prediction. A segmentation method is required to quickly and precisely 
determine wheat spike areas under real field conditions, while detecting 
and counting both healthy and diseased wheat spikes.

Deep learning-based methods for detecting FHB still face challenges. 
Our experimental dataset includes pose-variant, overlapping, densely 
distributed, and differently scaled targets, which negatively affect 
feature extraction. To address this issue, we propose a novel approach 
called DeepFHB, inspired by a Mask Transfiner(Ke et al., 2022) model, 
for high-throughput spike detection and refined segmentation in the 
context of Wheat Fusarium Head Blight (FHB). Because of the irregular 
shapes and sizes of wheat spikes and diseased areas, fixed-shape con
volutional kernels often perform suboptimally when dealing with such 
targets. To improve performance, we introduce the use of deformable 
convolution. Deformable convolution (Dai et al., 2017) is a technique 
that adds an offset at each sampling point of the standard convolution. 
The use of deformable convolution allows the convolutional kernel to 
sample from nearby regions, expanding its receptive field. This effec
tively mitigates the issue of misalignment of contextual features in 
segmentation tasks, resulting in enhanced segmentation accuracy. By 
combining the incoherent region detector and refinement transformer 
into a single network, refined segmentation can be achieved through an 
end-to-end method. The major contributions of this article are as fol
lows: (1) A high-throughput deep learning architecture is presented. It 
can simultaneously detect wheat spikes and disease spots, segment 
wheat spikes from complex field environments, and isolate Fusarium 
Head Blight (FHB) spots from the wheat spikes. (2) A coarse-to-fine 
strategy is employed by our approach, beginning with a multi-scale 
deep feature pyramid and object detection heads that propose bound
ing boxes and generate initial coarse masks for segmentation. Inconsis
tent regions are improved using a quadtree-based method and a 
lightweight detector. A transformer-based network then enhances the 
accuracy of instance segmentation. This method offers clear advantages 
in tasks that require finer object recognition, counting, contour infor
mation, and handling occlusion. (3) An end-to-end instance segmenta
tion model is provided by our method, enabling the concurrent 
execution of multiple tasks, including the detection and segmentation of 
wheat spikes and diseased areas. Concurrent processing significantly 
enhances work efficiency while maintaining an average testing time of 
three seconds per image. This is especially beneficial for managing high- 
throughput datasets or performing computationally intensive tasks. The 
paper is structured as follows: Section 2 provides an overview of the 
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wheat spike dataset used in this research and outlines the proposed 
methodology for efficient, high-throughput spike detection and refined 
segmentation for FHB. Section 3 details the algorithm experiments 
conducted, encompassing various tests, the evaluation of outcomes, and 
a comparative analysis of the results. Finally, Section 4 summarizes our 
work.

2. Materials and method

2.1. Image dataset

The field experiment was conducted at a field station in Fengtai 
County, Huainan City, Anhui Province, China (Latitude: 32◦53′11.1163″: 
N, Longitude: 116◦32′6.7273″: E). The original images of wheat spikes 
were sourced from three viewpoints using a digital camera NIKON 
D5300 and two mobile phones (HUAWEI ELE-AL00, Xiaomi MI 9), with 
parameters detailed in Table 1. The growth stage of wheat during image 
capture is a crucial determinant for effective FHB detection. Identifica
tion of affected spikes was not feasible during the early flowering and 
late maturing stages. The optimal period for disease evaluation was 

determined to be when spike symptoms are visible, but prior to senes
cence. The model is utilized during the mid to late stages of the repro
ductive period of wheat, which includes the Full Flowering, Milk, and 
Dough stages, extending up to just before the onset of senescence. We 
anticipate that users will capture images of wheat trial plots with min
imal constraints on image acquisition parameters, such as the angle of 
shot and distance. Consequently, we collected the current dataset under 
various conditions, including complex backgrounds, diverse distances, 
shooting angles, and varying illumination, as depicted in Fig. 1. The 
statistics on the number of various types of training samples under 
different imaging situations are shown in Table 2. Our dataset includes 
both simple and complex backgrounds, with a significantly larger 
number of samples in the complex background category, reflecting our 
focus on complex field scenes. Regarding diversity distance, shooting 
angle, and illumination, the sample counts for each subclass in our 
dataset are relatively balanced, which facilitates accurate recognition 
and segmentation of objects at different distances, angles, and lighting 
conditions by the model. This strategy augments the data diversity and 
subsequently enhances the adaptability and robustness of the model.

We build a wheat spike and FHB segmentation dataset named FHB- 
SA. A total of 1251 images of wheat with Fusarium head blight (FHB) 
were captured between 4:00p.m. to 7:00p.m. on May 12th, 2021, under 
complex wheat field conditions. The original images captured by the 
camera had a resolution of 4496 × 3000 and 2992 × 2000, while those 
captured by the mobile phone had a resolution of 3648 × 2736 and 
4000 × 3000. To reduce the computational load during training, the 
original images were resized to 1496 × 1000pixels. The wheat spikes 
and FHB disease spots were labeled using Labelme software to generate 
two categories of mask maps, marked as “1″ and “2” respectively (Fig. 2). 
We structured our dataset into training and validation subsets with the 
intention of a 9:1 split. However, to ensure statistical robustness and 
representativeness across different categories, the actual distribution 
resulted in 1031 images for training and 220 images for validation. This 

Table 1 
The parameters of camera setting.

Variable Value/State

Camera model NIKON D5300; HUAWEI ELE-AL00, Xiaomi MI 9
Image size 4496 × 3000;2992 × 2000;3648 × 2736;4000 × 3000
Zoom No zoom
Flash mode No flash
Aperture Av. f/5.3; f/1.8
Focal length 90 mm; 52 mm; 6 mm
Macro Off
ISO ISO-400; ISO-50
Image type JPG

Fig. 1. Data collection under different conditions (a) background complexity (b) diverse distances (c) shooting angel (d) illumination.

Table 2 
Statistic on the number of various types of training samples under different imaging situations.

Scene Type Simple Complex Close Distant Slide High angel shot Front lighting Back lighting

Number of images 10 1021 494 537 550 481 596 435
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distribution does not strictly adhere to a 9:1 ratio, reflecting a practical 
adjustment to meet the specific conditions of our dataset. The training 
subset, consisting of 1031 images with 26,124 wheat spikes and 7558 
Fusarium Head Blight (FHB) disease spots, is used to supervise our 
model through a rigorous 10-fold cross-validation process for hyper
parameter optimization. The validation subset, used exclusively for 
testing and not participating in the training process, comprises 220 
images with 6270 spikes and 1685 FHB disease spots. This subset 
functions effectively as a test set, employed to evaluate the system’s 
performance, accuracy, and reliability. The dataset was organized 
through stratified sampling to ensure representativeness across the 
different categories of data. Statistical details of our dataset distribution 
are provided in Table 3.

Fig. 3 provides critical statistical information on the number of in
stances per image and the proportion of image area occupied by each 
instance, including wheat spikes and Fusarium Head Blight lesions. A 
comprehensive count of instances present within each image was per
formed, and the resulting data is illustrated in Fig. 3(a) and Fig. 3(b). 
This reveals a notable variability in the quantity of instances per image 
within our dataset, with the instances ranging from extremely dense 
(peaking at 200 instances per image) to exceptionally sparse scenarios 

(with minimal representation of only a single instance per image). 
Furthermore, it is worth noting that over 75 % of the images within the 
dataset contain multiple instances, indicating an instance count of three 
or more. In contrast to traditional disease recognition studies that often 
focus on single-target identification, our research addresses the more 
complex challenge of multiple-target detection. As shown in Table 3, the 
average number of instances per image in our dataset is 25.89, while the 
average number of FHB disease spots per image is 7.39, highlighting the 
multi-target nature of our study. Objects within real-field scenarios are 
predominantly small in dimension. Notably, the size of a staggering 90 
% of these targets, encompassing both wheat spikes and disease spots, 
does not exceed 1 % of the entire image at its maximum extent, as 
illustrated in Fig. 3(c) and Fig. 3(d). The density and size distribution of 
instances within the images highlight the real-field challenges our model 
faces, particularly in accurately identifying and segmenting small and 
densely clustered objects in complex field scenes. This complexity un
derscores the need for advanced detection and segmentation methods, 
which our model aims to address, particularly tailored to handle the 
intricacies of multi-target scenarios.

Fig. 2. Data annotation by Labelme software (the labeled FHB disease spots are shown as red “1″, and the labeled wheat spikes are shown as green labeled “2”).

Table 3 
Statistics of Training and Validation Subsets.

Class name Training Validation All

Images Instances Avg. Images Instances Avg. Images Instances Avg.

Wheat spikes 1031 26124 25.34 220 6270 28.5 1251 32394 25.89
FHB disease spots 1031 7558 7.33 220 1685 7.66 1251 9243 7.39

This table presents the statistics for each class in the training and validation subsets. For each class, the table shows the number of images, the number of instances, and 
the average number of instances per image.
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2.2. Overview of the DeepFHB model

The dense wheat spike and the area of Fusarium head blight can be 
refined and segmented by our DeepFHB model. The architecture of the 
proposed network is illustrated in Fig. 4. It consists of three modules: an 
object detection module, a lightweight incoherent region detector, and a 
refinement transformer. In the object detection module, we predict 
bounding boxes as region proposals and produce an initial mask pre
diction at the low-resolution level. The incoherent region detector, 
which is known for its lightweight design, processes a rough initial mask 
in conjunction with multi-scale features to identify incoherent regions 
across various scale. Moreover, the refinement transformer uses the 
incoherent points identified on the constructed quadtree as input for the 
final segmentation refinement. The workflow of the proposed DeepFHB 
network is as follows, 

1. Images are fed to the object detection module, containing the 
backbone network and FPN(Lin et al., 2017a) network, with which 
bounding boxes and an initial course mask at low-resolution are 
predicted.

2. A pyramid is constructed to identify incoherent regions in multiple 
scale. We employ a lightweight detector and organize nodes with 

quadtree structure. Given that only a fraction of high-resolution 
image features needs to be processed by the refinement network, 
this allows our network to save huge memory and computational 
burdens.

3. The refinement transformer was designed for predicting highly ac
curate instance segmentation masks. Different from the traditional 
transformer in the encoder part, the encoder here is mainly 
composed of two parts, the node encoder and sequence encoder. The 
transformer performs both global spatial and inter-scale reasoning. 
The Decoder part is a two-layer small MLP, which can decode the 
output query label of each node in the quadtree, in order to predict 
the final mask labels.

4. During the training process, the entire DeepFHB framework is 
designed to be trained end-to-end. This approach was applied to 
achieve refined segmentation of both wheat spikes and areas affected 
by Fusarium Head Blight (FHB) in the test images.

2.3. Object detection module

The object detection module employs a network architecture similar 
to ResNet, augmented with deformable convolutional layers and group 
normalization. The deformable convolutions (Dai et al., 2017) enable 

Fig. 3. Some statistic of dataset. (a) number of wheat spike mask for all images (b) number of FHB spots mask for all images (c) mask area proportion histogram of 
wheat spike (d) mask area proportion histogram of FHB spots.
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the sub-network to adapt to the spatial characteristics of irregularly 
shaped objects like wheat spikes, while group normalization (Wu and 
He, 2018) addresses the dependency of batch normalization on batch 
size. Convolution kernels are crucial in neural networks for extracting 
object features. However, due to the non-rigid and highly variable 

nature of wheat spike boundaries, deformable convolutions are favored 
over standard convolutions. Traditional convolution kernels, which are 
typically rectangular, are optimized for extracting features from objects 
with stable and fixed shapes. Their effectiveness diminishes when 
dealing with objects that do not conform to fixed geometric patterns, 

Fig. 4. The framework of DeepFHB.

Fig. 5. Structure of Normalized deformable convolution.
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thus reducing their generalization capability.Given the diverse shooting 
angles encountered during close-up or distant capturing, along with 
significant variations in the shapes and scales of wheat spikes, and the 
dense distribution in real field environments often resulting in severe 
occlusions, traditional convolutional approaches face significant chal
lenges. Deformable convolutions offer a solution by introducing an 
offset to each sampling point in the kernel, thereby allowing the network 
to sample from regions adjacent to the original points and transcend the 
limitations of traditional rectangular sampling areas. This adaptation 
not only broadens the receptive field but also significantly enhances the 
ability to capture and utilize features from deformable objects, making 
the feature extraction process more effective for complex shapes 
encountered in agricultural settings. Ability of the deformable wheat 
spikes.

2.3.1. The deformable convolution
Fig. 5 exhibits the normalized deformable convolution kernel, where 

the arrow visually illustrates the augmented offset. The initial point of 
the arrow corresponds to the sampling location of the conventional 
convolution kernel, while the terminus represents the updated sampling 
location post-offset. Notably, the offset sampling points are evident as 
irregular shapes rather than rectangular forms, as depicted by the 
scattered dots. In the traditional convolution framework, given an input 
feature map x , the value of each pixel p in the output feature map y is 
computed as follows: 

y(p0) =
∑

pn∈R
w(pn)⋅(p0 + pn) (1) 

here, p0 represents the central position of the local receptive field R, 
while pn denotes the relative position within the receptive field around 
p0. Moreover, w(pn) symbolizes a learnable parameter that contributes to 
the convolution operation. The deformable convolution modifies this 
framework by adding an offset Δpn to the coordinates of each sampling 
point to realize the coordinate offset of the sampling point. The defini
tion of dconv can be represented as: 

y(p0) =
∑

pn∈R
w(pn)⋅(p0 + pn + Δpn) (2) 

Compared with ordinary convolution, deformable convolution can 
adjust the range of convolution operation by a learnable parameter Δpn. 

Due to the existence of Δpn, the sampling points spread into a non-grid 
shape. Since the value of Δpn may be a fractional value, bilinear inter
polation is used to calculate x(p0 + pn + Δpn).

2.3.2. Group normalization
In image segmentation, the batch size is usually set to a smaller value 

to save GPU memory. However, the consequence of a small batch size 
may lead to inaccurate calculations of the mean and variance, thereby 
reducing the performance of BN (Batch Normalization). To address this 
issue, we choose Group Normalization (GN) instead of BN. GN enhances 
the model’s normalization capability even when the batch size is very 
small. When GN calculates the mean and standard deviation, the 
channel dimension of each feature map is divided into G groups, with 
each group containing C/G channels. It then computes the average and 
standard deviation of the pixels within these channels. Each group of 
channels is normalized independently using its corresponding parame
ters, thus GN’s operation is not affected by batch size and the process is 
more stable than BN. The derivation process is illustrated as follows: 

x̂i =
xi − μi

σi
(3) 

where x denotes the tensor calculated by the feature map, and i 
presents the index number. The normalized tensor xi is described as xi =
[
xiN,xiC,xiH,xiB

]
. μ and σ are the mean and standard deviation respec

tively, which can be formulated as: 

μi(x) =
1

(C/G)HW
∑(g+1)C/G

c=gC/G

∑H

h=1

∑W

w=1
xnchw (4) 

σi(x) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
(C/G)HW

∑(g+1)C/G

c=gC/G

∑H

h=1

∑W

w=1
(xnchw − μi(x))

2
+ ε

√
√
√
√ (5) 

where ε is a very small constant to ensure that σ ≥ 0. n, c, g, h, and w 
are index numbers; B, C, G, H, and W are value ranges, where G is the 
artificially set number of groups, C / G is the number of channels per 
group.

2.4. Incoherent region detector

We propose an incoherent region detector for detecting error-prone 

Fig. 6. Quadtree on Incoherent Regions.
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regions where mask information is lost due to reduced spatial resolution. 
We compute it by down sampling compression and up-sampling recov
ering. As illustrated in Fig. 6, the up-sampling operation fails to recover 
the course segmentation mask. Due to its properties, a large part of the 
prediction error is concentrated in the incoherent regions. We computer 
residuals on regions where mask information is lost between the coarse 
mask and recovered mask. The incoherent region Rl of scale L can be 
formulated as follows: 

RL = f(AL− 1 ⊕ U(D(AL− 1))) (6) 

here, AL-1 is the binary ground-truth instance mask for objects at scale 
level L-1. The resolution of each scale level differs by a factor of 2. The 
nearest neighbor down-sampling and up-sampling are denoted by D and 
U, respectively. ⊕ indicates a logical “exclusive OR” operation, and f 
represents a 2 × down-sampling by performing a logical “OR” operation 
in each 2 × 2 neighborhood.

Given an input image, using its ground truth coarse mask, we can 
calculate the first level of the incoherent mask by a forementioned 
process, and then we can further decompose the quadtree nodes from 
Level1 to Level2. From Level2 to Level3, we can further decompose and 
construct a quadtree for three levels of incoherent nodes.

2.5. Refinement transformer

In contrast to standard transformer encoder, the encoder of refine
ment transformer has two parts: the node encoder and the sequence 
encoder. The input node sequence consists of three different levels of 
incoherent region nodes from the quadtree. The size of the sequence is C 
× N, where C is the dimension of the feature channel and N is the total 
number of nodes. To enrich the feature of incoherent points, the node 
encoder encodes each node of the quadtree with the following four in
formation: 1) Fine-grained features extracted from the FPN of the cur
rent level. 2) Semantic information provided from the initial coarse 
mask prediction region. 3) Relationship and distance information be
tween nodes (encapsulated by relative position encoding ROI). 4) 
context information and self-information of each node. Refinement 
Transformer module can capture global information and abundant 
contextual information.

2.5.1. The sequence encoder
The sequence encoder is composed of transformer encoder modules 

stacked three times, which contains two sub-layers, a multi-head 

attention layer and a fully connected feed-forward neural network 
referred to as an MLP. The structure is illustrated in Fig. 4. For the nth 
layer of the sequence encoder module, with xn denoting its input and xn-1 
representing its output, the entire computation process can be described 
as follows: 

xn = FFN
[
LN

(
xʹ

n
)]

+ xʹ
n, n = 1, 2,3 (7) 

xʹ
n = MSA[LN(xn− 1)] + xn− 1, n = 1, 2,3 (8) 

In the equation, MSA refers to Multi-head Self Attention illustrated in 
Fig. 5. FFN stands for Feed-Forward Neural network. LN represents layer 
normalization, which corresponds to the Layer Norm in Fig. 7.

Residual connections are employed between these sub-layers. Layer 
normalization and dropout layers are incorporated in the network ar
chitecture to facilitate improved convergence and mitigate overfitting. 
The utilization of multi-head attention enables the current node to 
attend not only to the current pixels but also to acquire contextual se
mantics. Transformer encoder blocks greatly enhance the capability to 
capture diverse local information and leverage the self-attention 
mechanism to explore the potential of feature representation. Evalua
tion on the FHB-SA dataset demonstrates the superior performance of 
transformer encoder blocks in effectively detecting occluded objects 
with high-density. The Pixel Decoder is a small two-layer MLP (Multi
layer Perceptron) that decodes each node’s output query and predicts 
the final mask label.

2.5.2. Loss function
Based on the constructed quadtree, all irrelevant nodes detected 

across quadtree levels form a sequence for parallel prediction. During 
training, a multi-task loss is employed, 

L = λDecLDec + λCrsLCrs + λRef LRef + λIncLInc (9) 

where the LDec denotes δ = f(Ib) the combined losses associated with 
bounding box position regression and classification, as determined by 
the box detection head in the decoder. It comprises a loss component for 
bounding box position regression, which measures the difference be
tween the predicted and actual bounding box positions, and a classifi
cation loss, which evaluates the difference between the predicted and 
actual categories. The loss denoted as Lcrs corresponds to the coarse- 
mask labels generated by the coarse-mask head, which can also serve 
as a representative loss value in classic instance segmentation methods 
like Mask R-CNN (He et al., 2017). Furthermore, LRef and LInc represent 

Fig. 7. The architecture of Refinement Transformer.
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the losses associated with the predicted labels for incoherent nodes and 
the detection of incoherent regions, respectively. In this paper, the 
hyper-parameter values of λDec, λCrs, λRef , λInc are set to{1.0,1.0,1.0, 0.5}.

3. Experimental results and analysis

In Section 3, using the specially constructed dataset FHB-SA, we 
conduct extensive experiments to validate the effectiveness of our pre
sented methods. This rigorous evaluation not only benchmarks against 
several state-of-the-art methods but also clarifies the practical implica
tions of our research. Initially, in Section 3.1, we detail the baseline 

comparisons, evaluation metrics, and experimental configurations 
employed to ensure comprehensive testing. This setup is crucial for 
demonstrating the efficacy of our approach and its reliability in com
parison with existing standards. Section 3.2 reports the results of abla
tion studies, shedding light on the significance of each component in our 
model. Subsequently, in section 3.3, a comparative analysis with state- 
of-the-art methods is presented, highlighting the enhancements and 
positioning of our model within the broader research landscape. Finally, 
Section 3.4 provides a qualitative assessment of our findings, illustrating 
the visual effectiveness and practical applications of our approach.e 
baseline, evaluation metrics, and experimental configurations are 
elaborated upon in Section 3.1. The comparative analysis with state-of- 
the-art methods is presented in Section 3.2. The results of the ablation 
experiments are reported in Section 3.3, while the qualitative results are 
provided in Section 3.4.

3.1. Experimental settings

3.1.1. Baseline
The baseline model for comparison consists of both Mask R-CNN(He 

et al., 2017) and Cascade Mask R-CNN(Cai and Vasconcelos, 2018) with 
Feature Pyramid Network (FPN)(Lin et al., 2017a). Mask R-CNN, short 

Table 4 
Hyperparameter Settings for DeepFHB model.

Hyperparameter Values

Initial learning rate 0.005
Momentum 0.9
Warmup_iterations 1000
Max_iterations 9000
Warmup_ratio 0.001
Batch size 2
Number of classes 2

Table 5 
Ablation study on the major components in detection pipeline on FHB-SA dataset.

Method Backbone Refinement Transformer DConv GN mAPBox APBox
50 APBox

75

Mask R-CNN ResNet50-FPN ​ ​ ​ 37.271 62.11 39.329
✓ ​ ​ 37.308 63.182 39.443
✓ ✓ ​ 38.035 64.126 40.542
✓ ​ ✓ 37.559 63.976 39.842
✓ ✓ ✓ 38.76 64.408 41.769

ResNet101-FPN ​ ​ ​ 36.985 61.4 39.523
✓ ​ ​ 37.906 63.274 40
✓ ✓ ​ 37.991 63.771 40.523
✓ ​ ✓ 38.521 63.576 41.589
✓ ✓ ✓ 38.621 64.057 41.809

Cascade Mask R-CNN ResNet50-FPN ​ ​ ​ 39.058 61.842 42.024
✓ ​ ​ 39.596 62.808 42.442
✓ ✓ ​ 39.986 63.357 43.387
✓ ​ ✓ 40.512 63.145 44.409
✓ ✓ ✓ 40.958 64.322 44.635

ResNet101-FPN ​ ​ ​ 37.677 60.985 39.844
✓ ​ ​ 37.906 63.274 40
✓ ✓ ​ 37.991 63.771 40.523
✓ ​ ✓ 38.521 63.576 41.589
✓ ✓ ✓ 38.612 64.057 41.809

Table 6 
Ablation study on the major components in segmentation pipeline on FHB-SA dataset.

Method Backbone Refinement Transformer DConv GN mAPMask APMask
50 APMask

75

Mask R-CNN ResNet50-FPN ​ ​ ​ 36.495 62.431 39.832
✓ ​ ​ 36.66 62.726 40.209
✓ ✓ ​ 37.555 64.245 40.925
✓ ​ ✓ 38.306 64.69 42.534
✓ ✓ ✓ 38.429 64.71 42.752

ResNet101-FPN ​ ​ ​ 36.415 61.796 40.472
✓ ​ ​ 38.283 64.327 42.329
✓ ✓ ​ 38.236 64.436 42.589
✓ ​ ✓ 38.397 64.751 42.678
✓ ✓ ✓ 38.656 64.966 42.694

Cascade Mask R-CNN ResNet50-FPN ​ ​ ​ 36.694 62.084 40.63
✓ ​ ​ 38.045 63.162 42.287
✓ ✓ ​ 38.338 63.368 42.963
✓ ​ ✓ 38.503 63.441 42.997
✓ ✓ ✓ 38.601 63.612 43.094

ResNet101-FPN ​ ​ ​ 36.266 60.644 40.913
✓ ​ ​ 37.694 62.871 41.985
✓ ✓ ​ 38.358 63.388 43.25
✓ ​ ✓ 38.453 63.789 43.095
✓ ✓ ✓ 38.624 64.023 43.351
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for Mask Region Convolutional Neural Network, is an advanced deep 
learning algorithm within the domain of computer vision designed 
specifically for addressing the challenge of instance segmentation. 
Cascade Mask R-CNN, incorporates two intermediary stages dedicated 

to object detection and mask segmentation within the processing pipe
line. These stages are inserted between the feature extraction phase and 
the final object detection (instance segmentation) heads of the Faster R- 
CNN(Ren et al., 2015) (or Mask R-CNN) framework. This augmentation 
of intermediate stages is what distinguishes Cascade R-CNN(Cai and 
Vasconcelos, 2018) from its predecessors, providing it with enhanced 
performance and refinement in object detection and mask segmentation 
tasks. Notably, this algorithm has achieved notable success in applica
tions such as the identification of plant diseases and fruits, underscoring 
its effectiveness in complex visual recognition tasks.

3.1.2. Evaluation metrics
In the conducted experiments, we employ the evaluation metrics as 

defined in the context of the COCO dataset. The metric of Average 

Table 7 
Detection results on FHB-SA dataset. Faster R-CNN, Mask R-CNN and Cascade Mask R-CNN are the representative models of two-stage. FCOS and RetinaNet are the 
representative models of one-stage. PointRend is the representative models of query.

Methods Backbone mAPBox APBox
50 APBox

75 APBox
s APBox

m APBox
l

Faster R-CNN ResNet50 37.513 62.895 40.066 3.288 29.546 46.889
Faster R-CNN ResNet101 34.988 60.049 37.117 3.022 26.052 45.285
Mask R-CNN ResNet50 37.271 62.11 39.329 2.603 29.633 46.501
Mask R-CNN ResNet101 36.985 61.4 39.523 3.384 28.855 45.988
Cascade Mask R-CNN ResNet50 39.058 61.842 42.024 4.389 30.75 48.282
Cascade Mask R-CNN ResNet101 37.677 60.985 39.844 5.265 30.344 47.621
FCOS ResNet50 34.744 61.023 35.896 1.924 27.722 44.514
MS R-CNN 

HTC
ResNet50 37.971 62.51 41.229 6.703 29.733 47.301
ResNet50 38.871 61.61 42.329 5.603 30.933 47.901

RetinaNet ResNet50 32.362 57.107 33.24 0.795 24.212 42.174
RetinaNet ResNet101 32.541 57.725 33.297 1.342 23.767 42.998
PointRend ResNet50 37.2 61.728 39.401 3.253 29.351 46.622
Our method + Mas ResNet50 38.76 64.408 41.769 8.045 32.376 47.679
Our method + Mas ResNet101 38.612 64.057 41.809 7.707 32.106 46.437
Our method + Cas ResNet50 39.958 63.322 43.235 5.132 32.482 48.744
Our method + Cas ResNet101 39.401 62.284 42.559 6.768 31.575 48.035

Table 8 
Instance segmentation results on FHB-SA dataset. Mask R-CNN, Cascade Mask R-CNN and HTC are the representative models of two-stage. PointRend is the repre
sentative models of query.

Methods Backbone mAPMask APMask
50 APMask

75 APMask
s APMask

m APMask
l

Mask R-CNN ResNet50 36.495 62.431 39.832 1.698 26.726 48.485
Mask R-CNN ResNet101 36.415 61.796 40.472 1.756 26.465 48.103
Cascade Mask R-CNN ResNet50 36.694 62.084 40.63 1.983 26.936 47.97
Cascade Mask R-CNN ResNet101 36.266 60.644 40.913 1.885 26.442 47.197
MS R-CNN ResNet50 37.695 62.931 42.532 1.798 27.226 49.085
HTC ResNet50 37.695 62.631 41.332 1.798 27.326 49.185
PointRend ResNet50 37.19 62.562 41.657 1.47 26.889 49.735
Our method + Mas ResNet50 38.429 64.71 42.752 2.49 30.129 50.949
Our method + Mas ResNet101 38.138 64.966 42.329 2.568 29.925 49.732
Our method + Cas ResNet50 38.045 63.368 42.287 2.088 28.434 50.882
Our method + Cas ResNet101 37.694 62.871 41.985 2.366 28.627 50.779

Table 9 
Comparison of AP Value: Our Method vs. Other Models.

Methods Backbone APBox
50 APMask

50 APBox
75 APMask

75

Su et al. *(2020) ResNet101 56.1 55.853 33.059- 32.332
Zhang et al.* (2022) ResNet50 63.187 63.736 39.927 40.192
Gao et al.* (2022) ResNet50 57.12 57.212 37.06 38.576
Our method ResNet50 64.408 64.71 41.769 42.752

Table 10 
Comparison of detection results of different models on AR.

Methods Backbone AR1Box AR10Box AR100Box AR100Box
s AR100Box

m AR100Box
l

Faster R-CNN ResNet50 4.6 24.7 47.6 7.4 40.6 56.7
Faster R-CNN ResNet101 4.6 23.7 44.4 7.6 37.1 55.3
Mask R-CNN ResNet50 4.6 24.4 46.9 6.6 40 55.7
Mask R-CNN ResNet101 4.7 23.8 46.3 6.8 39.7 54.8
Cascade Mask R-CNN ResNet50 4.7 24.8 49.2 8.8 42.4 57.9
Cascade Mask R-CNN ResNet101 4.7 24.7 48.3 9.9 41.3 57.0
FCOS ResNet50 3.9 23.5 46.5 3.1 40.4 57.6
RetinaNet ResNet50 3.9 21.7 45.1 3.9 36.8 57
RetinaNet ResNet101 4.1 21.8 44.9 5.2 35.7 57.1
PointRend ResNet50 4.5 24.2 47.2 7.6 40.1 56.3
Our method + Mas ResNet50 4.8 25.2 48.9 7.9 42.4 57.9
Our method + Mas ResNet101 4.6 24.8 48.8 8.1 43.5 56.2
Our method + Cas ResNet50 4.7 25.5 50.7 9.3 44.6 59.7
Our method + Cas ResNet101 4.8 26.2 51.9 12.2 44.4 62.6
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precision (AP) is conceptualized as the area under the precision-recall 
curve. The specific definition of AP is given by Formula 10–13. AP at 
IoU (Intersection over Union) equal to 0.5 and 0.75 are denoted as 
AP@50 (AP50) and AP@75 (AP75) respectively, while mean AP (mAP) is 
calculated for IoU thresholds ranging from 0.5 to 0.95(inclusive), 
incremented by 0.05. 

precision =
TP

TP + FP
(10) 

recall =
TP

TP + FN
(11) 

AP =

∫ 1

0
precision(recall)d(recall) (12) 

mAP =
1
N

∑N

j=1
APj (13) 

where TP (True Positive), FP (False Positive), FN (False Negative) 
signify the quantities of correctly identified, incorrectly identified, and 
undetected wheat spikes, respectively. Simultaneously, the metrics APs, 
APm, APl defined within the COCO dataset are utilized in our research. 
These metrics quantify the detection accuracy for target sizes of varying 
scales. However, due to the wheat spike in the dataset constituting a 

Table 11 
Comparison of instance segmentation results of different models on AR.

Methods Backbone AR1Mask AR10Mask AR100Mask AR100Mask
s AR100Mask

m AR100Mask
l

Mask R-CNN ResNet50 4.6 23.9 45.4 6.6 39.1 54.0
Mask R-CNN ResNet101 4.6 23.5 44.9 7.0 39.0 53.1
Cascade Mask R-CNN ResNet50 4.4 23.5 45.8 8.5 39.7 53.9
Cascade Mask R-CNN ResNet101 4.5 23.1 44.7 8.7 38.7 52.8
PointRend ResNet50 4.6 23.9 46.3 7.8 39.6 55.4
Our method + Mas ResNet50 4.8 25.3 47.9 8.6 41.7 57.3
Our method + Mas ResNet101 4.7 24.6 47.3 9.5 41.7 55.4
Our method + Cas ResNet50 4.6 24.3 48.5 9.8 42.1 55.9
Our method + Cas ResNet101 4.7 25 48.6 12.1 41.8 58.5

Fig. 8. P-R curve. Quantitative evaluation of segmentation performance compared to Mask R-CNN, Cascade Mask R-CNN and PointRend. The baseline is performed 
by Mask R-CNN with ResNet-50, and our method is also deployed in this approach.
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significant proportion of the image, we restrict our application to APm 
(pertaining to medium targets) and APl (relevant to large targets) for the 
purpose of evaluation. It should be noted that the AP metric is exten
sively leveraged in the domain of object detection, offering a compre
hensive measure of a model’s detection and segmentation performance.

3.1.3. Experiment platform
The experiments were conducted on a hardware platform with an 

Intel Core i9-9900 k CPU, 128 GB RAM, and an NVIDIA TITAN RTX GPU 
(24 GB memory). We trained the instance segmentation network on 
Ubuntu 18.04 with python3.7 and CUDA 9.1 in the PyTorch deep 
learning framework. We set the learning rate to 0.005 in the initial state, 
training for a total of 9000 iterations. The weight decay method was 
linear, and the weight factor was 0.001. We trained all the models by 
end-to-end. The hyperparameters of the model are shown in Table 4.

3.2. Ablation study

The proposed segmentation detector for Fusarium Head Blight (FHB) 
has introduced three key components, namely the refinement trans
former module, DConv Nets (deformable convolution), and the GN 
method (Group Normalization). An ablation study is conducted to 
dissect the individual contributions of each component, with the base
line model being Mask R-CNN with FPN and Cascade Mask R-CNN with 
FPN. These three components are systematically integrated into the 

baseline model one by one, and the resulting detection and segmenta
tion outcomes are presented in Table 5 and Table 6, respectively. 
Initially, we introduce the refinement transformer module to the base
line, as depicted in the second row of Table 5. When the ResNet101 
backbone is employed, the refinement transformer module exhibits a 
notable improvement of 2.531 % in AP50 for segmentation. Moving 
forward, the third row of Table 6 showcases the impact of DConv Nets, 
which elevate the performance from 62.726 % to 64.245 %. This 
improvement arises from the ability of DConv Nets to diversify the 
training samples, thereby benefiting the recognition of FHB disease. 
Finally, the GN method further enhances performance, elevating it from 
64.245 % to 64.71 %, as evidenced in the fifth row of Table 6. This 
improvement results from the enhancement of feature representation 
achieved by the group normalization instead of batch normalization.

3.3. Comparison with State-of-the-Arts

In this section, we undertake a comparative study to validate the 
efficiency and effectiveness of the proposed framework. Our objective is 
to assess the performance of our model in the context of wheat disease 
detection and edge extraction in comparison to other detection and 
instance segmentation methods. We assessed the performance of our 
method for detecting wheat spikes and diseases by comparing it with 
eight detectors: Faster R-CNN(Ren et al., 2015), Mask R-CNN(He et al., 
2017), Cascade Mask R-CNN(Cai and Vasconcelos, 2018), FCOS(Tian 

Fig. 9. Qualitative segmentation performance on FHB-SA dataset. From left to right column: input images, performance comparison on ground truth, Mask R-CNN, 
Cascade Mask R-CNN, RetinaNet and our method model. The red, white and yellow boxes highlight some representative comparisons.
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et al., 2019), MS R-CNN(Huang et al., 2019)，HTC(Chen et al., 2019), 
RetinaNet(Lin et al., 2017b) and PointRend(Kirillov et al., 2020). As 
shown in Table 7, out method outperforms other state-of-the-art de
tectors. The proposed method achieves 64.408 % AP50 on FHB-SA 
datasets, 7.301 % improvements of RetinaNet, 3.385 % improvements 
of FCOS and 2.68 % improvements of PointRend. Noticeably, its per
formance on small objects is 5.442 % AP higher than Mask R-CNN. We 
then compare the segmentation performance of our method with several 
other state-of-the-art methods on FHB-SA dataset. The results are listed 
in Table 8. Our method outperforms Mask R-CNN by 3.17 % when the 
backbone is ResNet101.

Furthermore, to assess our method’s localization and segmentation 
performance, we conducted a comparative analysis against state-of-the- 
art techniques using recall metrics, as presented in Table 10 and 
Table 11. The tables clearly indicate that our approach excels in both 
localization and segmentation refinement. Specifically, our proposed 
method achieves an impressive 51.9 % Average Recall (AR), surpassing 
competing methods. Additionally, we investigated the accuracy of 
localizing and segmenting wheat spikes and Fusarium Head Blight 
(FHB) spots across various scales. For instance, our method achieves AR 
values of 12.2 %, 44.4 %, and 62.6 % for small, medium, and large 
agricultural FHB spots, respectively, outperforming alternative 
methods.

Table 9 presents a comprehensive comparison of our method against 
three other studies in the field, namely Su et al. (2020), Zhang et al. 
(2022b) and Gao et al. (2022). Our model outperforms in both bounding 
box (bbox) and mask segmentation compared to these existing methods. 
Due to the unavailability of datasets and code from these studies, we 

replicated their experiments using the algorithms described in their 
respective papers. This approach ensures that the comparisons are 
conducted under consistent and fair conditions, providing a reliable 
basis for evaluating the relative performance of our method.

3.4. Qualitative results visualization

Precision-recall (PR) curves. In terms of qualitative evaluation, we 
visualize some of detection results to further substantiate our approach. 
Fig. 8 provides an illustration of precision-recall (PR) curves for various 
metrics (C75, C50, Loc, Sim, Oth, BG, and FN) as applied in our exper
imental setup. The PR curves compare our model (d) with existing state- 
of-the-art methods: Mask R-CNN (a), Cascade Mask R-CNN (b), and 
PointRend (c), specifically within the heterochromatic category. These 
curves take recall as the axis and precision as the ordinate axis, with the 
performance of each model reflected by the area below the curve. The 
larger the area, the better the performance of the model. Our model 
demonstrates a notable performance advantage, as evidenced by a C50 
score of 0.647, marking a substantial improvement of 2.3 % over Mask 
R-CNN, 2.6 % over Cascade Mask R-CNN, and 2.1 % over PointRend. 
Even under more stringent IoU thresholds (AP75), our method out
performs the baselines by a margin of 3 %, maintaining superior per
formance. Furthermore, by effectively reducing false positives caused by 
background interference, we have improved detection accuracy from 
0.842 to 0.901. These enhancements are particularly visible in Fig. 8, 
where the area under our model’s curve is visibly larger compared to the 
others, underscoring its capability to minimize missed detections and 
confirming the effectiveness of our proposed refinement transformer 

Fig. 10. Examples of visualization results. From the top to bottom: high-density wheat spikes in the field, the heat map of high-density wheat spikes in the field, 
sparse wheat spikes in the field, the heat map of sparse wheat spikes in the field. The red region represents the region of interest extracted by the model.

Q. Zhou et al.                                                                                                                                                                                                                                    Computers and Electronics in Agriculture 227 (2024) 109552 

13 



module in enhancing two-stage detectors.
Qualitative Results. In order to ascertain the efficacy of our 

method, we compare our method with Mask R-CNN, Cascade Mask R- 
CNN and RetinaNet. Fig. 9 demonstrates several visualization results 
generated by various methods. It is evident from the visualizations that 
our method exhibited outstanding performance in both wheat spike 
detection and segmentation. This was manifested by a notable decrease 
in the occurrence of missed detections, thereby enhancing the overall 
accuracy of wheat spike segmentation. Especially, our method can 
precisely segment some instances without ground truth. The average 
visualization test time per image, with approximately 60 target in
stances, is 3 s. This performance aligns with the requirements for real- 
time detection and segmentation.

Visualization of heat maps. The intensity of the red color in the 
heat map, as illustrated in Fig. 10, is indicative of increased attention 
directed towards the features within that specific region. Upon 
comparing the disease images with their respective heat maps, it be
comes apparent that the red areas align consistently with both the po
sition and color of the disease spots in the images. This alignment 
suggests that the network effectively concentrates on the distinctive 
features associated with Fusarium Head Blight (FHB) diseases. The 
presented model adeptly directs its attention to the diseased spot areas 
of wheat spikes, effectively minimizing focus on extraneous and intri
cate backgrounds, thus obtaining higher disease identification accuracy 
than the other models.

Comparative Experiments and Discussions on the FHB-SA 
Dateset. In this study, we visualized the detection and segmentation 

results of the test dataset collected from real field scenarios. Figs. 11 and 
12 illustrate the rfesults at varying densities of wheat spikes. To ensure a 
fair comparison with existing models such as Mask R-CNN and Cascade 
Mask R-CNN, we utilized PyTorch and Detectron2 (Wu et al., 2019) as 
the foundational deep learning frameworks. This approach ensures 
consistency and reliability in evaluating each model’s performance in 
precision agricultural tasks within complex field environments. The 
segmentation results of our test images are extremely satisfactory. As 
depicted in Figs. 11 and 12, our DeepFHB model accurately segments 
each wheat spike, regardless of its sizes, orientations, number of spikes 
per image, locations, occlusions, and other characteristics.

We can observe that our model outperforms the other two compar
ative methods with complex backgrounds, dense spikes (Fig. 12), 
overlapping and occluding spikes, backlit collection (Fig. 11, fifth col
umn), incomplete spikes at image edges, and small target lesions. Fig. 13
prominently displays the detection results in various occlusion sce
narios. Taking the 1st, 2nd, and 5th columns of Fig. 11 and the 1st, 2nd, 
4th, and 6th rows of Fig. 12 as examples, we observe the challenges in 
detecting overlapping wheat spikes, especially in the background 
obscured by wheat awns. Other methods either detected the overlapping 
wheat spikes as a single entity (as shown in the 2nd column of Fig. 11
and the 4th row of Fig. 12) or failed to detect the targets obscured by the 
awns (as in the 1st and 5th columns of Fig. 11, and the 2nd row of 
Fig. 12).

Our method not only successfully distinguishes individual over
lapping wheat spikes but also identifies Fusarium Head Blight (FHB) 
lesions on the wheat spikes. Furthermore, in the last row of Fig. 12, 

Fig. 11. Qualitatively comparisons of the low-density wheat spikes shot in scenes such as small targets, adjacent spikes, insufficient illumination of spikes, and wheat 
spikes being cut at image boundaries. From top to bottom are input images, and the results generated by Mask R-CNN, Cascade Mask R-CNN, and Our method. The 
red box part of each image has been enlarged to better show the experimental details.
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concerning wheat spikes obscured by wheat leaves, our method dem
onstrates the capability to detect these obscured spikes. In contrast, 
other methods do not fully succeed in detecting the wheat spikes in such 
complex scenarios. On the other hand, our method also exhibits 
commendable performance in detecting small targets. For instance, in 
the 3rd column of Fig. 11. and the 3rd row of Fig. 12, our approach 
successfully detects small Fusarium Head Blight (FHB) lesions on the 
wheat spikes located at the edges of the images. In contrast, other 

methods fail to detect such small lesions. As demonstrated in the first 
row of Fig. 13, our method is also effective in detecting small lesions on 
wheat spikes in small-target scenarios under backlit conditions. This 
capability further illustrates the robustness of our approach in chal
lenging imaging environments.

Effects of different viewing angles of photographing. To verify 
the generalization capability of our method, we conducted tests on 
wheat spike detection and segmentation in unstructured environments. 

Fig. 12. Qualitatively comparisons on the high-density wheat spikes in different densities in the field, from top to bottom: 21–30, 31–40, 41–50, 51–60, 61–70, 
71–80 wheat spikes per images. From left to right are input images, and the results generated by Mask R-CNN, Cascade Mask R-CNN, and Our method. The red and 
green box parts of each image have been enlarged in order to better show the experimental details.
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Visual results in scenarios with non-ideal shooting angles, target tilts, 
varying target scales, and overexposure are presented in Fig. 14. Our 
method consistently identified a greater number of wheat spikes 
compared to other methods, demonstrating its effectiveness in complex 
and varied imaging conditions.

Discussion of Limitations and Challenges One of the significant 
challenges in deploying deep learning for detecting Fusarium Head 
Blight (FHB) is maintaining high accuracy under highly variable field 
conditions, where factors like occlusion, variable lighting conditions, 
and background noise significantly complicate the detection and seg
mentation tasks. Our research addresses these challenges by introducing 
a novel deep learning architecture that integrates advanced instance 
segmentation techniques with a coarse-to-fine strategy. This approach 
not only enhances the accuracy of detecting and segmenting wheat 
spikes and FHB lesions in complex backgrounds but also improves the 
model’s ability to handle specific variabilities associated with field 
images.

Innovatively, our model incorporates a hybrid of convolutional 
neural networks with transformers to leverage both local and global 
contextual information. This significant departure from traditional 
methods, which primarily rely on CNNs, allows for better feature rep
resentation and recognition accuracy, particularly in cluttered scenes. 
Furthermore, our method drastically reduces processing times while 
maintaining high throughput, which is essential for real-time agricul
tural decision-making.

The capability of our model to perform end-to-end segmentation and 
classification concurrently sets it apart from most current methodologies 
that focus solely on detection or segmentation. This comprehensive 
approach ensures that our model not only addresses the immediate 
needs of accurate disease detection but also facilitates broader agricul
tural management practices, including yield prediction and disease 
severity assessment.

4. Conclusions

In this paper, we introduce a high-throughput deep learning archi
tecture for detecting and segmenting wheat spikes and Fusarium Head 
Blight (FHB) in complex field environments. Our approach integrates a 
multi-scale deep feature pyramid, quadtree-based refinement, and a 
transformer-based network, which significantly enhances instance seg
mentation accuracy, specializing in refined object segmentation and 
handling occlusion. This end-to-end model enables simultaneous task 
execution, significantly improving efficiency with an average image 
processing time of 3 s, ideal for large datasets and computationally 
intensive tasks in agricultural image analysis. Specifically, our model 
achieves a box AP of 64.408 and a mask AP of 64.966 on the FHB-SA 
dataset for wheat spike and FHB lesion segmentation. These results 
mark substantial improvements of 2.3 % over Mask R-CNN, 2.6 % over 
Cascade Mask R-CNN, and 2.1 % over PointRend. Even under more 
stringent IoU thresholds (AP75), our method outperforms the baselines 
by a margin of 3 %, maintaining superior performance. Additionally, by 
effectively reducing false positives caused by background interference, 
we have improved detection accuracy from 0.842 to 0.901. These per
formance metrics not only showcase our model’s effectiveness but also 
highlight its potential in facilitating rapid and accurate diagnosis of 
wheat Fusarium Head Blight. The method allows for non-destructive, 
high-throughput, rapid, and accurate segmentation of wheat spikes 
and Fusarium Head Blight (FHB) lesions, saving a significant amount of 
human labor. Furthermore, the system assists agricultural workers in 
assessing diseases and predicting yields accurately, and facilitates tar
geted research. The approach provides technical support for auto
mating, improving efficiency, and enhancing the accuracy of diagnosing 
wheat Fusarium Head Blight.

Fig. 13. Visualization results of wheat spikes and FHB segmentation under the three complex conditions. (a) Small target affected by shadows, occlusion, and uneven 
illuminations. (b) Spikes with FHB adjacent to each other. (c) Wheat spikes occlusion and cut at the image borders. The red box part of each image has been enlarged 
in order to better show the experimental details.
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