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Figure 1. Category-level Garments Pose Tracking framework with integrated 2D Deformation And 3D Reconstruction (GaPT-DAR).
Given the partial point clouds from adjacent frames and pose prediction result from the previous frame, we propose a garment pose
tracking pipeline consisting of 3D-2D projection, 2D deformation learning, and 2D-3D reconstruction steps. The output is the tracked pose
(complete point cloud) of garments in task space.

Abstract

Garments are common in daily life and are important for
embodied intelligence community. Current category-level
garments pose tracking works focus on predicting point-
wise canonical correspondence and learning a shape de-
formation in point cloud sequences. In this paper, moti-
vated by the 2D warping space and shape prior, we pro-
pose GaPT-DAR, a novel category-level Garments Pose
Tracking framework with integrated 2D Deformation And
3D Reconstruction function, which fully utilize 3D-2D pro-
jection and 2D-3D reconstruction to transform the 3D
point-wise learning into 2D warping deformation learn-
ing. Specifically, GaPT-DAR firstly builds a Voting-based
Project module that learns the optimal 3D-2D projection
plane for maintaining the maximum orthogonal entropy
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during point projection. Next, a Garments Deformation
module is designed in 2D space to explicitly model the gar-
ments warping procedure with deformation parameters. Fi-
nally, we build a Depth Reconstruction module to recover
the 2D images into 3D warp field. We provide extensive
experiments on VR-Folding dataset to evaluate our GaPT-
DAR and the results show obvious improvements on most
of the metrics compared to state-of-the-arts (i.e. Garment-
Nets [8] and GarmentTracking [32]). More details are
available at https://sites.google.com/view/
gapt-dar.

1. Introduction
Garments, as a type of non-rigid object, are pervasive
in daily life. Visual pose tracking for garments is cru-
cial for the embodied intelligence community and benefi-
cial for many downstream tasks such as interactive percep-
tion [36], object manipulation [31], imitation learning [38],
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human-machine collaboration [16]. Different from rigid ob-
jects [41] and articulated objects [39] that can be regarded
as the combination of finite rigid parts, garments poses are
defined as a canonical point-wise learning and shape recon-
struction task [8, 32] (e.g. NOCS coordinates). The in-
tricate kinematic constraints inherent in garments bestow
them with a significantly higher degree of freedom, ren-
dering garment pose tracking, particularly for off-body gar-
ments, a challenging task.

Under this circumstance, recent works formulate the
category-level garments pose tracking task as a dense pre-
diction and reconstruction problem in a normalized coordi-
nate space that is shared among the instances from one cate-
gory, and build the encoder-decoder deep learning paradigm
to solve it. GarmentsNets [8] pioneered the definition of
category-level pose estimation for garments, aiming to map
the observed partial surface of garments to the normalized
canonical space. Following this setting, GarmentTrack-
ing [32] provides a large-scale garments manipulation video
dataset and accurately tracks the vertex-level poses by con-
catenating features from adjacent frames. Despite the suc-
cess of these works, several issues exist:

• They predict per-vertex corresponding canonical coordi-
nates solely within the 3D point cloud space, which limits
the model’s ability to explicitly perceive the twisting pro-
cess of the garments and diminishes interpretability.

• Except for some corner cases such as prom dresses, cat-
walk wear and other specially designed clothes, most
common garments have natural geometric symmetry
(front and rear surfaces) [5, 11, 26], which has not been
paid attention by previous tracking methods. Recent stud-
ies [1, 6, 20] have demonstrated the effectiveness of incor-
porating human posture as prior information.

To address these challenges, we argue that the shape
deformation of garments might be better perceived in 2D
space rather than 3D observed point cloud. This ap-
proach leverages the more efficient modeling capabilities
of 2D neural networks when processing 2D data, such as
point sets. Motivated by this, we propose an integrated
2D shape Deformation And 3D Reconstruction framework
for category-level Garments Pose Tracking task, namely
GaPT-DAR, utilizing the 3D-2D transformation and 2D-
3D reconstruction pipeline to boost the pose perception per-
formance. In our GaPT-DAR for tracking task, given the
partial point clouds at adjacent frames along with the esti-
mated canonical shape from the previous frame, we build
a weight-shared ResUNet3D [9] for two-frame 3D feature
fusion. Next, the Voting-based Projection module is de-
signed to predict the projection plane by a voting-offset
scheme that is utilized for 3D-2D projection of the point
clouds. The projection plane aims to modulate and isolate
the maximum orthogonal project information entropy, thus
minimizing information loss during the 3D-2D projection

process. After this, we propose a Garments Deformation
module that learns the deformation function applied in 2D
point sets and outputs pose-sensitive mappings to explic-
itly model the warping procedure from canonical state to
task state. Finally, to recover the point sets into a 3D mesh
Task (output), we build a Depth Reconstruction module
that uses a simple neural network to regress the per-pixel
depth in task space.

We evaluate our GaPT-DAR on category-level pose
tracking tasks for garments on VR-Folding dataset [32],
compared with state-of-the-art GarmentsNets [8] and Gar-
mentTracking [32]. Our contributions can be summarized
as follows:

• We present GaPT-DAR, an efficient and effective end-to-
end framework tailored for category-level garment pose
tracking. Central to our approach is the integration of
a 3D-2D shape deformation mechanism, enabling the
learning of garment pose warping within the 2D space.

• In our GaPT-DAR framework, we harness geometric
symmetry as prior information to identify the optimal
projection plane for acquiring the 2D garment point sets.
This strategy aids in the learning of the garment deforma-
tion function via explicit parametric deformation model-
ing.

• Extensive experiments validate the superior performance
of GaPT-DAR compared to state-of-the-art methods in
category-level garment pose tracking tasks. Codes will
be made publicly available.

2. Related Work

2.1. Non-Rigid Pose Estimation and Tracking
Rigid pose estimation and tracking has been widely studied
in the computer vision [40] community that aims to predict
6D poses for the whole object [27, 28, 35] or each rigid part
of articulation [17–19, 30]. Different from rigid or articu-
lated objects, non-rigid pose estimation and tracking can be
defined as a canonical shape completion and reconstruction
task [8, 20]. A milestone work to achieve non-rigid recon-
struction is proposed by Newcombe et al. [23] that exploits
GPU solver to boost the reconstruction speed. The follow-
ing works attempt to improve the tracking and reconstruc-
tion quality by geometry modeling [25], sparse representa-
tion [4] or motion understanding [10]. Recently, to accu-
rately track and reconstruct non-rigid deformations, many
works pay attention to the on-body clothes pose understand-
ing tasks that leverage the human body as shape prior for
better perception performance [2, 12, 21]. For example,
Yang et al. [34] propose to reconstruct the garment model
from a single image with the aid of human body pose esti-
mation along with the non-rigid parameters. Yu et al. [37]
also propose a simulate-and-fit pipeline like ours, however
since the non-rigid deformation is caused by body motion,
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only cloth body collision is considered in the pipeline.
Although the human body might offer a good reference

for understanding clothes poses, it also contains large non-
rigid deformations thus limiting the pose perception gen-
eralization. Therefore, our work focuses on garment pose
estimation and tracking with higher complicated cases such
as during manipulation or severe collision [32].

2.2. Off-body Garments Perception
To fully understand the non-rigid objects pose, e.g.
clothes or garments, GarmentsNets [8] proposes a simu-
lation dataset for category-level pose estimation based on
CLOTH3D [1] asset, in which the garments are lifted by a
robot with random pick points and forced to be stable with
gravity. This setting and its corresponding pose estimation
task take RGB-D images as input to recover the complete
garment shapes in canonical space, but still suffer from self-
occlusion missing. When moving to the garments manip-
ulation case, GarmentTracking [32] records the garments
videos by VR hardware to build a VR-Folding dataset and
firstly presents a category-level garment pose tracking task.
This dataset fully considers dynamic scenes including in-
clude complex human actions and garment configurations,
which are more challenging.

However, this manner tends to result in unclear warping
information easily while also neglecting geometric details.
Shape deformation of Garments can be found in cloth sim-
ulation [26], Virtual try-on [43], Reconstruction [14], etc.
These methods perform warping using explicit techniques,
which are both efficient and effective. Building on these
insights, our work advances the garment tracking task by
extending and refining these techniques.

3. Notation and Problem Statement
Following GarmentTracking [32], we take the PC NOCS,
mesh NOCS, and partial point cloud observations as input.
As depicted in Fig. 2, to avoid ambiguity and better clarify
the data flow, we use the symbol ”∗” to indicate the data
and feature flow of PC NOCS and ”′” to indicate those
of mesh NOCS. For example, V ∗

w , S
∗
w,F∗

w are used to illus-
trate the data flow for the PC NOCS branch, while we utilize
V ′
m, S′

m,F ′
m to represent for the mesh NOCS branch.

To achieve robust category-level garment pose tracking,
our core idea is modeling garment tracking via an inte-
grated 3D-2D shape deformation and 3D depth reconstruc-
tion mechanism. Mathematically, we formulate the inputs
and outputs in the garment tracking task as follows: given
the self-occlusion point cloud Pk from k-th frame and Pk+1

from (k + 1)-th frame as input, we use PC NOCS P ∗
k and

a rest-state mesh NOCS P ′
k+1 serving as auxiliary informa-

tion. Our target is to output the complete observation (mesh
Task) for (k+1)-th frame in task space. Note that Pk, Pk+1,
and P ∗

k are partial observations, while P ′
k+1 is complete.

In our GaPT-DAR, we conduct a projection from 3D
points to 2D point sets, which is achieved through a projec-
tion plane. Then we go on to perform 2D deformation with
2D point sets. we recover the depth information in the last
stage. Specifically, firstly, we fuse 3D-CNN features from
the k-th and (k + 1)-th frame observation and output the
(k + 1)-th frame garment pose P ∗

k+1 in NOCS, facilitating
downstream network utilization. Subsequently, we demon-
strate how to project 3D points into 2D point sets. This
procedure is conducted via the optimal projection plane for
all the candidate points, we defined the optimal projection
plane by a normal vector V and a pivot point. Afterward,
given the features F∗

w and F ′

m from PC NOCS branch and
mesh NOCS branch, respectively, we perform garment de-
formation guided by TPS transformation parameter θ. Fi-
nally, we reconstruct the point-wise depth and output the
tracking result (mesh Task), which represents the (k+1)-th
frame complete point cloud in task space.

4. Methodology
In this Section, the four interconnected modules of our
GaPT-DAR are illustrated in detail, including Inter-frame
Feature Fusion, Voting-based Projection, Garment Defor-
mation, and Depth Reconstruction. In what follows, we
describe in brief how these attempts are implemented and
explain our innovations in detail accordingly.

4.1. Inter-frame Feature Fusion
Taking Pk and Pk+1 as input, we handpick ResUNet3D [9]
to sever as the backbone, which enjoys the merit of per-
ceiving fine-grained local details well. Empirically, to gen-
eralize different garments regardless of intra-class variance
(without precise 3D CAD models), we leverage NOCS [28]
to complement the garment-aware feature representation.
As depicted in Fig. 2, we use per-point NOCS coordinate
prediction from the k-th frame P ∗

k for positional embedding
due to the clearer geometric and structural information.

To learn semantically meaningful connections between
task space and NOCS, a fusion of the inter-frame feature is
inherently necessary, we first concatenate the features from
the dual streams to get F and then adopt the refiner [32]
to capture the relationship between local features, which
helps to perceive the attribution of the local details of the
deformed garments, even on the extreme samples. Finally,
this module outputs the PC NOCS P ∗

k+1, which can be used
for (k + 1)-th frame garment pose represented in NOCS.

4.2. Voting-based Projection
In (k + 1)-th frame, to conduct deformation in 2D plane
with the given refined PC NOCS P ∗

k+1 and the mech NOCS
P ′
k+1, our key idea can be summarized as follows: refor-

mulating this problem as a projection task and learning se-
mantically 2D warping vector. The key idea behind our
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Figure 2. The overview of our GaPT-DAR. Formally, taking partial observation Pk in k-th frame and Pk+1 in (k+1)-th frame as input,
using PC NOCS P ∗

k in k-th frame and mesh NOCS P ′
k+1 in (k + 1)-th frame as auxiliary information, we output the complete (k + 1)-th

frame observation (mesh Task) in task space. GaPT-DAR consists of the following components: (a) Inter-frame Feature Fusion from
input used for the downstream network (Section 4.1). (b) Voting-based Projection. A voting-based mechanism is proposed to conduct
3D-2D projection via the optimal projection plane (Section 4.2). (c) Garment Deformation. We perform garment deformation guided
by TPS transformation parameter θ. (Section 4.3). (d) Depth Reconstruction. We recover the depth for point sets GW and output the
complete point cloud (mesh Task) in the (k + 1)-th frame (Section 4.4).

method is to determine a projection plane to conduct pro-
jection from 3D coordinates to a 2D plane. However, deter-
mining an optimal projection plane directly is non-trivial.
we notice that its normal vector can really help: the normal
vector u of the optimal plane can be regarded as the vertical
axis, and the intersection of the vertical axis and the plane
can be considered as the pivot point q. In other words, we
define the plane by its axis parameters ϕ = (u,q), where
u ∈ R3,q ∈ R3. The normal vector u ensures the orien-
tation of the optimal plane, while the pivot point helps to
determine the location of the plane.

Since the projection scheme of the dual stream is simi-
lar, in what follows, we take the mesh NOCS branch as an
example. The fundamental mechanism behind our method
is an offset-voting scheme with a heatmap, which aims to
predict the pivot point q and the normal vector u from
P ′
k+1 = {pi}Ni=1. Concretely, for each point pi, we ex-

plicitly regress an axis vector Vi ∈ R7, The first three di-
mensions of Vi demonstrate the normal vector of pi for the
optimal projection plane. The second three dimensions rep-
resent the offset of pi to the pivot, and the rest dimension
represents the heatmap (This is considered as the probabil-
ity of a candidate point becoming a pivot point).

For normal vector prediction, we perform a dense regres-
sion by building a three-layer MLP and output 3N channels
to regress the u for each point pi. The final predictions of
the u will be the average prediction over all the points with
heat scores larger than the threshold of 0.5. Meantime, for
pivot point prediction, we additionally output 4N channels,
where N channels indicate the heatmap of p′i and 3N chan-
nels indicate the offset between this point and the GT pivot.

Therefore, given the predicted pivot point p̂ = (x̂, ŷ, ẑ) and
normal vector u = (α, β, γ), we regard it as the vertical axis
of the optimal projection plane. The point with the highest
probability through the heatmap will be considered as the
predicted result of q.

Given u and q, we conduct the projection procedure
as follows: intuitively, due to the free rotation of a plane
about its normal vector, projection coordinates become non-
unique. Thus, we define a common direction vector e =
[1, 0, 0] for two branches meantime to ensure consistency
in their projection interpretation. Mathematically, for each
point from P ′

k+1 = {p′i}Ni=1 = {(x′
i, y

′
i, z

′
i)}Ni=1, the projec-

tion procedure can be formulated as:

(u′i, v
′
i) = (d · e, ||d× e||2) (1)

where d = (p′i − p̂)× u

||u||2
(2)

where ||d||2 is the vertical distance from the point p′i to the
normal vector u. Point sets {(u′i, v′i)}Ni=1 ∈ S′

m form the
projection result in the optimal 2D projection plane.

4.3. Garment Deformation
Deformation of the 2D plane has received extensive study
in the past literature [11, 15]. Common methods such as
affine transformation [42], Homography [7], TPS [33], etc.
Among them, Thin Plate Spline (TPS) Transformation is a
curve-based algorithm that can adaptively distort different
regions [3], while all points must act uniformly or multi-
ple viewpoints are required in other methods. Given these
considerations, we propose a 2D TPS-conditioned garment
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deformation scheme, which warps the rest state garment
{(u′i, v′i)}Ni=1 ∈ S′

m guided by the garment that undergoes
deformation {(u∗i , v∗i )}Ni=1 ∈ S∗

w. Our method aims to ex-
plore the distribution of possible task space of the garments
in 2D plane, which not only inherits the benefits of the
aforementioned deformation methods but provides a simple
and straightforward idea of warping.

Since S′
m and S∗

w are a family of two-dimensional coor-
dinate groups, to bridge the domain gap between 3D space
and 2D point sets, we use the 2D Pointnet to exact warped
features F∗

w and rest state feature F ′
m from S∗

w and S′
m,

which is essential and fundamental to the learning of warp-
ing vector θ ∈ RN×2. Later on, F∗

w and F ′

m are adopted
as inputs and fed into the correlation layer to calculate the
matching score (element-wise multiplication). After that, a
regressor is used to predict the warping vector θ (TPS trans-
formation parameter) to model the garment deformation ex-
plicitly. However, since there is a giant gap between the gar-
ment in the rest state (S′

m) and the deformed garment (S∗
w),

we find that estimating θ directly is non-trivial. To this end,
we perform a self-adaptive pre-alignment procedure before
the projection for P ′

k+1, which aims to transform it to the
proper position and scale before our TPS transformation.
This procedure can be formulated as an affine transforma-
tion:

P ′
aff =

 s 0 0
0 s 0
0 0 s

 (P ′
k+1)

T −

 s · x′ − x∗

s · y′ − y∗

s · z′ − z∗

 (3)

where P ′
aff denotes the transformed garment item (show

in Fig. 2). (x′, y′, z′) and (x∗, y∗, z∗) are used to repre-
sent the center of P ′

k+1 and P ∗
k+1 respectively. We use s

as a rescaling factor computed by comparing the aspect ra-
tio to ensure that the aligned garment is almost equal to the
warped garment.

Here, we share a more generalized expression to under-
stand the above process: we start by aligning the centers of
P ′
k+1 and P ∗

k and roughly re-size them to a uniform size,
which can facilitate the TPS warping process and help the
warping vector θ learn a well-modulated feature.

When it comes to the TPS transformation, we apply the
feature F ′

m from the rest state and the pose-aware repre-
sentation F∗

w into the geometric matching network, which
conducts the regression of TPS parameters θ. Given the
θ ∈ RN×2, we conduct warping process by mapping S

′

m ∈
RN×2 to S∗

w ∈ RN×2. By this way, a better representa-
tion of θ facilitates us to warp S′

m to the warped garment
S∗
w. The errors between S′

m and GT S∗
w can be defined as

Garment Deformation loss LGD:

LGD =
∑
i

∥∇(T (S′
m|θ)− S∗

w)∥1 (4)

where T (·|θ) denotes the TPS transformation with θ.

4.4. Depth Reconstruction
Interpolation-based methods are commonly employed in
3D surface reconstruction tasks. While these methods can
help mitigate missing information by mapping partial point
clouds to complete ones, they often struggle to efficiently
recover detailed information such as wrinkles and bumps.
Based on this consideration, how might the network focus
on the depth vector of each point, disentangle it from the la-
tent feature space, and subsequently recover the depth infor-
mation? This perspective derives our strategy. Our solution
concerns the following requirements: (1) Consistency. The
reconstruction quality is initially assessed by focusing on
surface consistency, ensuring smooth and coherent surfaces.
(2) Gradient. In practice, we find it’s not enough to learn
a good depth map considering these requirements. [29]
prompts us that the normal maps outperform depth maps in
perceiving more detailed geometric information. The spe-
cific details of our scheme are introduced as follows:

The predicted warped garments Gw will be fed in a con-
volutional layer serving as a regressor, which aims to out-
put the depth map. We use 3 customized losses to meet the
aforementioned requirements: Firstly, to guarantee consis-
tency, we change the vanilla L1 loss to be Log-L1 version
motivated by [13]. This helps our network to penalize low-
frequency differences between the estimated and the ground
truth depth map, resulting in a relatively smooth depth re-
sult. The consistency loss Lc is formulated as:

Lc =
1

N

N∑
i=1

ln
(
||d̂i − d̃i||1 + 1

)
(5)

where d̂i and d̃i are the predicted depth and GT depth of
the i-th point respectively, and N is the total number of the
valid depth map points.

Afterward, to get a trade-off between the complexity and
effectiveness of our framework, we focus on network opti-
mization rather than blindly stacking network modules and
deeper networks. We conjecture that depth gradient can re-
ally help. To recover the subtle geometric details and further
strengthen the depth estimation, a depth gradient loss Lg is
harnessed to enhance the learning of depth-aware features
which is defined as:

Lg =
1

N

N∑
i=1

(ln (♢x (ξi) + 1) + ln (♢y (ξi) + 1)) (6)

where ♢ denotes the Sobel operator, ξi denotes the absolute
error of the depth prediction of i-th point. We can obtain
normal maps from depth gradient maps referred to [22],
whose difference can also be penalized by Eq.6. In prac-
tice, we observe that the depth gradient from gullies and
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hills-liked regions have significantly larger gradient values,
which are constrained along the normal direction and help
recover geometric details.

The above loss functions reinforce and complement each
other, and are used to constrain different errors in the depth
reconstruction process: (1) Lc is fully exploited to enhance
the consistent information along the optimal vertical axis
aforementioned in Sec. 4.2. (2) With the auxiliary of the
normal direction, Lg drags the attention on the optimal pro-
jection plane. Finally, we utilize a convex combination of
these loss functions and the final loss for depth reconstruc-
tion module LDR is:

LDR = λcLc + λgLg (7)

where λc and λg are weight factors.

5. Experiments
5.1. Experimental Setup
Dataset. We have evaluated our method on VR-Folding
dataset made by [32] for category-level garments pose esti-
mation task. This dataset contains two garment manipula-
tions flattening and folding that consider garments under the
off-body environment. There are four garment categories,
i.e. Shirt, Pants, Top, and Skirt, in VR-folding, which are
derived from CLOTH3D[1].
Implementation and Metrics. In this work, experiments
are implemented by PyTorch and Two NVIDIA TESLA T4
GPUs. when dealing with the input partial point cloud and
the input canonical mesh, we randomly sample 4000 points
from the former and 6000 points from the latter’s surface
for each frame. The number of total training epochs is 200.
NOCS Coordinate Distance (Dnocs)), Chamfer Distance
(Dchamf )), and Correspondence Distance (Dcorr), Ad).
are used as metrics.
Baselines. Treat [8] and [32] as the baselines, We con-
ducted comparative experiments in the following meth-
ods or settings: (1) GarmentNets [8] is the prior art for
category-level garment pose estimation, We adapt it into
the tracking task by frame-wise prediction. (2) Garment-
Tracking. Going beyond GarmentNets and in a similar
spirit, [32] introduced the garment into video streaming for
observation and performed the first category-level garment
Tracking task.

5.2. Comparison with the SOTA Methods
5.2.1. Quantitative Results
For quantitative evaluation, we conduct experiments on the
VR-Folding dataset (Folding and Flattening task). Table 1
reports the performance in detail. See them all, our method
achieves better performance on all metrics compared to

other baseline methods. Treat them equally: the most dif-
ficult metric is A3cm in Folding task and A5cm in Flatten-
ing task, which is hard to cope with due to the narrow er-
ror tolerance. Our method outperforms GarmentNets in this
metric by a large margin and is also capable of beating Gar-
mentTracking with an average of 2% superior performance
(e.g., 29.8% vs 32.3% in Shirt Folding). Moreover, we also
do better in both pose estimation and surface reconstruc-
tion tasks compared to other methods, which can be proved
by mean correspondence distance Dcorr and Chamfer dis-
tance Dchamf . we conjecture this is attributed to our use of
the depth reconstruction module and 3 customized losses,
which can perceive the point-wise geometric details.

5.2.2. Qualitative Results
Qualitative results are shown in Fig. 3. Comparing Fold-
ing task and Flattening task, all the methods prefer the lat-
ter and show better performance under the same settings.
Severe self-occlusion should be responsible for this, which
leads to the giant difficulty in reconstructing the complete
cloud. However, our method can also excel in this case
compared with all the current methods, which can perceive
the full configuration from partial visual observation bet-
ter. Besides, we find that the predictions from GarmentNets
are barely adequate for garment deformation perception in
continuous frames since its unique framework can’t fuse in-
formation between frames, instead only reconstructing the
video stream frame by frame individually. GarmentTrack-
ing, while capable of outputting relatively accurate results,
suffers from some significant errors due to its implicit warp-
ing methods. Our results are closest to GT over the full
range of frames, which echoes the quantitative results (e.g.
Dnocs = 0.098 for ours vs. Dnocs = 0.109 for Garment-
Tracking for Shirt Flattening in Table 1).

5.3. Ablation Analysis
Projection Mechanism. A better projection plane leads
to less loss of information (In this paper, it refers to the
smaller overlap created by the projection process). In this
section, we consider two other projection mechanisms: (1)
linear projection using SVD algorithm. (2) xOz plane that
is the best projection plane with our observation. Table 2
shows the comparison results. Our method maintains the
best performance in all metrics. We conjecture the conclu-
sion as follows: SVD is just a purely linear probing algo-
rithm that does not efficiently capture the semantically op-
timal projection plane, thus losing a lot of information and
bringing in additional noise, while xOz plane can only con-
sider projection relations in a single direction, which leads
to undesirable results since it is non-parametric.

3D vs. 2D Prediction for Deformation Function. As
mentioned before, the fundamental mechanism of our
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Type Method Folding Flattening
A3cm ↑ A5cm ↑ Dcorr ↓ Dchamf ↓ Dnocs ↓ A5cm ↑ A10cm ↑ Dcorr ↓ Dchamf ↓ Dnocs ↓

Shirt
GarmentNets [8] 0.8% 21.5% 6.40 1.58 0.221 13.2% 59.4% 10.54 3.54 0.135

GarmentTracking[32] 29.8% 85.8% 3.88 1.16 0.051 30.7% 83.4% 8.63 1.75 0.105
GaPT-DAR (Ours) 32.3% 89.3% 3.85 1.03 0.044 33.1% 87.6% 8.61 1.68 0.098

Pants
GarmentNets [8] 16.2% 69.5% 4.43 1.30 0.162 1.5% 42.4% 12.54 4.19 0.185

GarmentTracking[32] 47.3% 94.0% 3.26 1.07 0.039 31.3% 78.2% 8.97 1.64 0.113
GaPT-DAR (Ours) 49.1% 95.2% 3.15 0.99 0.031 32.8% 79.3% 8.79 1.44 0.101

Top
GarmentNets [8] 10.3% 53.8% 5.19 1.51 0.148 21.6% 57.6% 9.98 2.13 0.174

GarmentTracking[32] 37.9% 85.9% 3.75 0.99 0.051 36.5% 69.0% 9.41 1.59 0.113
GaPT-DAR (Ours) 39.5% 88.3% 3.59 0.89 0.045 37.6% 73.2% 9.38 1.48 0.107

Skirt
GarmentNets [8] 1.1% 30.3% 6.95 1.89 0.239 0.1% 7.9% 18.48 5.99 0.287

GarmentTracking[32] 23.8% 71.3% 4.61 1.33 0.060 5.4% 39.4% 16.09 2.02 0.199
GaPT-DAR (Ours) 25.1% 73.1% 4.55 1.25 0.048 8.0% 39.9% 15.98 1.99 0.187

Table 1. Quantitative results for category-level garments pose tracking on VR-Folding dataset. There are four garment categories
(Shirt, Pants, Top and Skirt) and two garment manipulation tasks (Folding and Flattening).

Figure 3. The qualitative results on category-level garment pose tracking task from the VR-Folding dataset. We illustrate pose
tracking performance on folding (left) and flattening (right) garment manipulations. In the long sequence tracking, our prediction could
recover more geometric details which still keeps more in step with GT compared to state-of-the-arts.

Projection Method Folding Flattening
Dchamf ↓ Dnocs ↓ Dchamf ↓ Dnocs ↓

SVD-based 1.53 0.119 2.50 0.247
xOz plane 1.73 0.136 2.78 0.287

Voting-based 0.99 0.031 1.44 0.101

Table 2. Comparison of different projection methods. Here we
only report experimental results on Pants due to the limited space.

method is the 3D-2D explicit warping procedure and 2D-3D
point-wise depth reconstruction. In this part, we conduct 3D
prediction for deformation function directly. Concretely, af-
ter feature fusion, we use a 3D GNN [24] to regress the
coordinates of the complete point cloud in NOCS directly.
Comparison results are shown in Fig. 4. It shows that direct
3D manner can’t perform well, especially showing a larger
performance gap in Flattening task. This can be concluded

Figure 4. Comparison between direct 3D and integrated 3D-2D
deformation learning. The solid lines denote the 3D-2D manner
while the dotted lines denote the direct 3D manner.

that direct regression of 3D coordinates might not perceive
the details of the warping process well.

Noise. The first-frame garment pose and the input canonical
shape are prone to be perturbed with noise when faced with
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Noise Level spc opc δ smesh

1x [0.8, 1.2]3 [0, 0.1]3 0.05 [0.8, 1.2]3

2x [0.6, 1.4]3 [0, 0.2]3 0.10 [0.6, 1.4]3

3x [0.4, 1.6]3 [0, 0.3]3 0.15 [0.4, 1.6]3

Table 3. The noise parameters in the robustness experiment.
[a, b]3 indicates a 3-D vector (i.e. x, y, z axis) in which each di-
mension is uniformly sampled from [a, b].

Pertubation GarmentTracking [32] GaPT-DAR (Ours)
Flattening Folding Flattening Folding

⋆

0× 0.105 0.039 0.098 0.031
1× 0.113 0.039 0.109 0.004↓ 0.035 0.004↓
2× 0.158 0.083 0.151 0.007↓ 0.078 0.005↓
3× 0.172 0.093 0.161 0.011↓ 0.087 0.006↓

♣

1 0.105 0.039 0.098 0.031
1/2 0.110 0.052 0.106 0.004↓ 0.049 0.003↓
1/4 0.151 0.064 0.145 0.006↓ 0.058 0.006↓
1/6 0.173 0.076 0.164 0.009↓ 0.071 0.005↓
1/8 0.187 0.088 0.178 0.009↓ 0.078 0.010↓

Table 4. Robustness evaluation results. We test the effects of
noisy pose initialization and frame interval for our GaPT-DAR.
Note that we use ⋆ to represent Noise Level, while ♣ is used to
represent Frame Keep Ratio. The metric is Dnocs.

practical application, so we conduct robustness experiments
regarding additional noise distribution following [32]. Con-
cretely, a global scaling factor, a global offset, and a Gaus-
sian noise standard deviation are performed on the coordi-
nates of PC NOCS and mesh NOCS from the first frame.
The detailed setting of these noise parameters is shown in
Table 3. Quantitative results are shown in Table 4 (Top), our
method is more robust than GarmentTraking under different
noise levels. Note that when posting different methods to
garment perception for embodied AI, noise can frequently
occur. Our model performs better on heavy noise scenar-
ios especially, we infer that this is attributed to our explicit
warping method and point-aware depth reconstruction.

5.4. Robustness Analysis

Large Frame Interval. In this part, we conduct robust-
ness evaluation under a large frame interval. Concretely,
we downsample the number of frames in the video stream
so that the number of frames decreases to 1/2, 1/4, 1/6, and
1/8 of the original while keeping the duration constant, and
we promise that this downsampling process is random. The
robustness study results are displayed in Table 4 (Down).
Under all frame rates, our method demonstrates greater ro-
bustness. Additionally, our method shows a more robust
performance on Folding task against missing frames com-
pared with Flattening task.

Figure 5. The qualitative results on unseen instances for Fold-
ing and Flattening task in real-world data.

5.5. Sim-to-Real Transfer
To assess the generalization capability of the GaPT-DAR,
we conduct training on synthetic models and subsequently
evaluate its performance on real-world scenarios. For this
purpose, we employ a real-world dataset sourced from [32].
The results, presented in Fig. 5, demonstrate the effective-
ness of our approach in accurately tracking garment poses
for novel garments under real-world conditions.

6. Limitations
Firstly, under severe self-occlusion conditions, where oc-
cluded parts are imperceptible (i.e., their pose cannot be
captured), our method results in degraded performance.
Secondly, despite promising pose tracking results with real-
world data, our method necessitates a substantial amount
of meticulously labeled high-quality data and meticulously
aligned 3D meshes, which are resource-intensive and ex-
pensive. Future work should explore self- or weakly-
supervised methods to alleviate this reliance on costly data
and address this limitation effectively.

7. Conclusion
In this paper, the proposed GaPT-DAR framework that
solves category-level garment pose tracking task via inte-
grated 2D deformation and 3D reconstruction. Our method
designs a Voting-based Projection, Garment Deformation
module, and Depth Reconstruction module to achieve the
3D-2D-3D pose learning pipeline. Experimental results
show that our GaPT-DAR is both quantitatively and quali-
tatively better than state-of-the-arts. Future works will con-
sider practical applications that address the simulation and
real-world gap issue, as well as pose tracking under egocen-
tric manipulation of embodied agents.
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