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Abstract

Articulated objects are common in human’s daily life. Current research on artic-
ulated objects often emphasizes visual understanding of articulations rather than high-
level functional manipulation tasks from a single RGB-D or point cloud observation. In
this paper, to study the problem of Category-level Visually Articulated object Perception
task (C-VAP), we propose an Integrated Category-level visual Articulated object percep-
tion Framework, namely ICAF-4. Given the RGB and depth information as input, the
ICAF-4 is capable of end-to-end processing of four mainstream tasks for articulated ob-
jects: object detection, part segmentation, pose estimation and manipulation. To support
the C-VAP task, we re-annotate the rich functional grasping affordance and grasp poses
by an automatic annotation generation way for two popular articulation benchmarks, Ar-
tImage and ReArtMix, covering object-level and scene-level datasets. Accompanying
the datasets, our ICAF-4 takes the part segmentation branch, pose estimation branch and
manipulation prediction branch into a single forward pass. To boost the manipulation
learning performance, we propose an anchor-based grasp pose estimation strategy where
the "anchor" poses serve as references at multiple sizes and the grasp pose can be learned
by the anchor selection and refinement process. Experiments demonstrate the superior
performance of our ICAF-4 on integrating these visual tasks for articulation perception.
Our code and dataset are available in https://github.com/xwb0117/ICAF-4.

© 2024. ∗ indicates equal contribution. † indicates the corresponding author. The copyright of this document resides
with its authors. It may be distributed unchanged freely in print or electronic forms.
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1 Introduction
Articulated objects are ubiquitous in our daily lives, spanning from small table-scale objects
(e.g., eyeglasses) to large-size objects (e.g., dishwashers). The manipulation of articulated
objects often involves specific semantic actions, like opening a drawer using its handle or
activating a switch. Therefore, the comprehension of articulated objects from visual obser-
vations is instrumental for embodied intelligence, which necessitates precise object manip-
ulation within both simulated and real-world environments [2, 4], such as advanced visual
perception [12], sophisticated motion planning [27], and adaptive learning capabilities [28].
Despite progress made on articulation problems, most existing studies concentrate primarily
on lower-level visual tasks, such as part segmentation [17], pose estimation [11, 13, 14],
and motion prediction [15], rather than addressing high-level robot functional manipulation
tasks. In this paper, we aim to investigate the problem of Category-level Visual Articulated
object Perception task (C-VAP), which considers predicting the visual perception as well
as manipulation from a single RGB-D image. To achieve this goal, several major problems
need to be addressed:

(i) Function Gap in Different Tasks. When tackling perceptual tasks, robots often de-
compose them into several sub-tasks and optimize them progressively, layer by layer. How-
ever, this approach can easily lead to the accumulation of perceptual errors. (ii) Richness of
Grasp Pose. Prior arts [18, 27] on grasp pose modeling tend to generate a single grasp pose
for each pixel/point, which cannot contribute a complete manipulation annotation for train-
ing. (iii) Inaccurate Grasp Pose Regression. Current methods [3, 16, 23] prefer to conduct
a direct regression of the grasp poses from visual inputs, resulting in poor performance of
manipulation learning.

Figure 1: Given an RGB-D image, our ICAF-
4 aims to achieve four mainstream articulation
tasks in an integrated framework: object detec-
tion, part segmentation, pose estimation and ma-
nipulation prediction (grasping affordance and
grasp pose).

In this paper, we propose ICAF-
4, a Integrated Category-level visual
Articulated object perception Framework
for addressing C-VAP task. Our ap-
proach leverages both RGB and depth in-
formation to simultaneously tackle four
tasks: articulated object detection, part
segmentation, pose estimation and ma-
nipulation prediction, as shown in Fig. 1.
Specifically, given an RGB-D image as
input, our ICAF-4 first utilizes an ob-
ject detector to locate the precise 2D
bounding box. Next, the targeted object
is back-projected into a point cloud and
processed by three parallel modules for
predicting part segmentation, 6D pose,
and manipulation prediction (grasping
affordance and grasp pose). In pose esti-
mation module, we define the part-level pose and object-level pose to describe the transfor-
mation state from the perspective of the parts and the overall object. To avoid the drawback
of direct grasp pose regression, we propose a series of "anchor" poses that serve as refer-
ences at multiple sizes and our network predicts the final grasp pose by matching the closest
anchor and refining the grasp pose.

We validate our ICAF-4 on two articulation datasets ( ArtImage [26] and ReArtMix [12]
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). To obtain the training samples, we re-annotate these datasets with rich functional grasping
affordance and grasp poses by an automatic annotation generation way. To validate the
generalizability of our approach, we also test ICAF-4 on the real world scenarios showcasing
significant success in articulated object manipulation. In summary, the contributions of our
paper are:

(i) An integrated framework ICAF-4 for articulated object perception and manipu-
lation is proposed, which integrates multiple visual tasks. (ii) Rich grasp pose annotation
for articulated objects, we present a method for generating complete grasp poses for each
point/pixel. The re-annotated datasets support the ICAF-4 network training. (iii) Anchor
based grasp pose alignment. We propose to predict grasp pose through an anchor matching
and refinement way. Compared with the regression strategy, our method significantly boosts
the grasp prediction performance.

2 Related Work

2.1 Category-level Articulation Understanding

Category-level Articulation Understanding aims to grasp the underlying principles and dis-
tinctions within each category for deeper analysis. In recent years, research on category-level
articulated object pose estimation tasks has been extremely active, attracting widespread at-
tention in the field. Unlike instance-level pose estimation, which predicts the 3D rotation and
translation of a 3D articulated object model [9, 22], the goal of category-level pose estimation
is to predict the poses of unseen objects within the same category of articulated objects. The
initial approach for category-level pose estimation was introduced by NOCS [24]. Later on,
the method was extended to the task of estimating part-level poses by A-NCSH [10], which
generalized the concept of normalized coordinate symbols to joints. Moreover, AKB48 [11]
proposed a complete pipeline for robotic manipulation utilizing estimated joint poses.

Despite progress, priors are limited to a single target of articulated objects. In contrast,
our work builds upon category-level pose estimation tasks and further explores how to effec-
tively apply estimated pose information for manipulating and grasping articulated objects.

2.2 Articulated Object Manipulation

Interacting with articulated objects [1, 20] has emerged as a prominent topic in the embodied
AI community, aming to gathering rich perceptual information, including shape, texture, and
motion details. Previous approaches to articulated object manipulation have predominantly
focused on imitation learning [6, 7, 25], leveraging demonstrations from experts to learn
manipulation policies. However, these methods suffer from limitations in collecting diverse
demonstrations, which can be time-consuming and costly in practice. As a pioneer work,
Where2art [18] introduced dense visibility maps as actionable visual representations, reveal-
ing action probabilities at each point on the 3D surface of articulated objects. Building upon
Where2art’s framework, GAMMA [27] extends the approach by learning articulation mod-
eling and grasp pose affordance from diverse articulated objects across different categories.

Building upon this, our approach extends the diversity of actionable possibilities at
each point, significantly increasing potential action opportunities, thus providing robots with
greater flexibility and adaptability in grasping and manipulating articulated objects.
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3 Problem Statement
To achieve a comprehensive algorithm for C-VAP task, our key idea is to output the 4 targets
in an end-to-end way. Here, we formulate a new paradigm for C-VAP task with a novel in-
tegrated framework named ICFA-4. Specifically speaking, given a single RGB-D image I as
input, our ICFA-4 conducts the predictions under unknown CAD models for (1) V Detected
Instances (partial observation {pi}N

i=1 =P ∈RN×3) as well as their corresponding categories
C = {cv}V

v=1. (2) Semantic Segmentation at part-level (i.e., P = {δk}K
k=1, where δk represents

for k-th rigid part). (3) 6D Pose Estimation, including global 6D pose T = {R, t} and per-part
pose estimation T (k) = {R(k), t(k)}. Concretely, we predict: i) object-level NOCS map P ′

ob j
describes global pose ( ′ is used to define the coordinates in NOCS). ii) part-level NOCS
map P ′

part describes pose of each rigid part. Afterward, the global pose T as well as per-part
pose T (k) part-level will be recovered, individually. (4) Manipulation Prediction. Given the
partial observation P with N points, we predict the grasping affordance G = {Gi}N

i=1, where
Gi ∈ {0,1} (discrete score) indicates the grasp result, grasp pose Q = {q j}J

j=1, where q j
represents the manipulation pose and J is the total number of attempts.

4 Grasping Affordance and Grasp Pose Generation
To automatically generate the rich grasping affordance and grasp poses, we adopt an inter-
active strategy that allows a robot gripper to interact with each point of the articulated object
in a simulated environment. By observing the actions of the gripper and the state of articu-
lated objects, we can learn relevant information about grasping affordance and grasp poses.
For grasp pose generation, previous pixel-based manipulation generation methods usually
annotate only one interactive grasp pose at each pixel [18, 27]. To overcome this constraint,
we attempt to generate rich and complete grasp poses. During the interaction process of the
robotic gripper with the articulated object, we represent the gripper’s grasp pose by a rotation
matrix R ∈ R3×3. To visually inspect the gripper’s grasp, we further decompose the rotation
matrix R into three independent direction vectors (α ∈ R3×1,β ∈ R3×1,γ ∈ R3×1), which
are mutually orthogonal in the euclidean space(see Fig. 2 (a)). It can be re-formulated as
Equation 1.

R = [α,β ,γ].T (1)

where α signifies the gripper’s interaction direction with the grasp point (typically opposite
to the normal vector of the grasp point). β represents the gripper’s movement direction and
γ is the movement direction of the gripper. Thus, the grasp pose is generated by finding all
the possible {α,β ,γ} combinations that achieve successful object manipulation. Here, we
define the "manipulation success" as the gripper can grasp the target point and move the part
through 50% of its motion range.

To generate the rich and complete grasp poses, the interactive attempts follow two steps:
1) Rotation around the grasp point(see Fig. 2 (b)). A random α is firstly selected within the
hemisphere opposite to the normal vector of the grasp point. Then we choose another vector
that is not collinear with it, and the cross product of these two vectors yields a rotation axis
perpendicular to the α . Next, we select an appropriate rotation angle within the hemisphere
range with m angles, and rotating the α around the rotation axis by the chosen angle leads
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Figure 2: (a) The three direction vectors of the gripper. (b) Rotation around the grasp point.
(c) Rotation around the gripper.

to m different α orientations. 2) Rotation around the gripper(see Fig. 2 (c)). Given the
α , we build a discrete and orthogonal space for sampling β and γ to alter the rotation of
the gripper itself since the β and γ are precisely the two mutually perpendicular direction
vectors in the plane vertical to the α . After the dense direction vector sampling, we can
obtain nearly 200 grasp poses for each point. Meanwhile, we record the points that contain
at least one successful manipulation as grasping affordance. By combining the two steps,
we re-annotate the ArtImage [26] and ReArtMix [12] by adding the grasping affordance and
grasp pose annotations. The new datasets will support our ICAF-4 network training and
validation.

5 ICAF-4 Architecture

The overall pipeline of ICAF-4 framework is shown in Fig. 3. Our ICAF-4 is capable of
performing four visual perception and manipulation tasks with the input of RGB-D image.
Subsequently, we detail the learning pipeline of each module in ICAF-4.

5.1 Articulated Object Detection and Part Segmentation

The ICAF-4 initiates with object detection that identifies articulated objects within a scene
and discerns them from other objects. We utilize Mask R-CNN [8] as the detector to
achieve this goal. Using 2D bounding box extracted from the object detection module, we
back-project the image into point cloud P using depth information. To accurately separate
part boundaries for segmentation, P is processed through a point cloud backbone (Point-
Net++ [19]) and a three-layer MLP to output K channels for part segmentation δk. The
training loss function is cross-entropy.
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Figure 3: The pipeline of our ICAF-4 framework. Taking the partial observation as input,
ICAF-4 can conduct category-level articulated object detection, segmentation, pose estima-
tion and manipulation tasks in an end-to-end way. It comprises 4 key components: (a)
Articulated Object Detection. Articulations will be detected. (b) Part Segmentation. Se-
mantic segmentation at part-level. (c) 6D Pose Estimation. Part-level and Object-level Pose
estimations are conducted. (d) Manipulation Prediction. Grasp region is segmented from
P and multiple grasp poses are predicted.

5.2 Pose Estimation

To accurately estimate 6D pose, this module is inspired by the NOCS map [10, 24] for pre-
diction. In ICAF-4, we conduct two types of poses for each articulated object, i.e., part-level
pose and object-level pose. Specifically, part-level pose is defined as the transformation be-
tween each part in its local canonical space and camera space. Exploiting the definition of
NOCS map, the part-level pose P ′

part for k-th part can be calculated by normalizing P(k)

within the center of the part. In contrast, the object-level pose P ′
ob j is defined as the transfor-

mation between the part in the whole object space and camera space. Thus, the NOCS map
for object-level pose is calculated by normalizing P(k) using the object center point.

To train the pose estimation module, we build a three-layer MLP at the end of the back-
bone network and output two parallel branches with 3×K and 3×K channels for predicting
part-level and object-level NOCS map respectively. Each 3-channel aims to predict the 3-
dimensional NOCS coordinates at k-th part. The final NOCS map will be masked by multi-
plying the predicted part segmentation from the former module. To obtain the per-part pose
T (k), we use Umeyama algorithm to build an energy function for optimization and RANSAC
for outlier removal similar to [10].

5.3 Manipulation Prediction

Manipulation prediction module aims to predict grasping affordance G = {Gi}N
i=1 and grasp

poses Q = {q j}J
j=1. In detail, we model the grasping affordance as a region segmentation

task that predicts whether the point can be grasped or not so the grasp region is defined as
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the aggregation of all satisfied graspable points. Formally, we also utilize a three-layer MLP
to conduct the region segmentation with cross-entropy loss function. During inference, the
graspable points will be the points whose grasping affordance scores are greater than 0.5.

Another branch is to predict the grasp poses Q = {q j}J
j=1. We propose an anchor based

grasp pose rather than using direct regression. This strategy consists of three steps:
(1) Anchor Candidates Generation. For each graspable point, we generate anchor

candidates A = {Al}L
l=1 (L is the total number of anchor candidates), which are sampled

from 0◦ to 360◦ uniformly around xyz directions. Totally, the anchor number is determined
by the sample interval size and dense anchors might influence the network performance. An
effectiveness experiment is conducted to discuss this point in Sec. 6.2.

(2) Anchor-based Grasp Pose Alignment. After the grasp pose anchor generation, we
align each target grasp pose q j with all the anchor candidates A. The aligned anchor A∗ is
defined as the closest rotation degree distance between q j and Al :

A∗ = argmin
Al

(∥q j −Al∥2) (2)

After all the grasp poses Q matches the corresponding anchors A, we generate a grasp
mask array M(Q) = {M(Q)

l }L
l=1 to identify the matched anchor and non-matched anchor,

which is defined as:

M(Q)
l =

{
1, if σ(Al ,Q) is True
0, otherwise

(3)

where σ(Al ,Q) is the matching function that indicates there is a q j is aligned with the
anchor Al . For each element M(Q)

l , it indicates Al is the matching anchor if M(Q)
l = 1.

(3) Anchor-based Grasp Pose Refinement. When each grasp pose q j is aligned with
a corresponding anchor, we utilize the refinement mechanism to obtain the predicted grasp
pose. Specifically, the network outputs 5L channels at the end of point cloud backbone, in
which L channels are used to classify the indexes of matched anchors Ml and 4L channels
are used to predict the pose distance D∗

j between q j and Al as D∗
j = q j −Al . We adopt cross-

entropy loss and L2 loss functions to train the two branches. Finally, the predicted grasp
pose q j can be obtained by:

q j = Ml ∗Al +D∗
j (4)

6 Experiments

6.1 Experimental Settings.
Datasets and Metric. We conduct experiments on ArtImage [26] and ReArtMix [12]. For
ArtImage, we report the mIoU for Part Segmentation and Affordance, pose error (rotation
and translation error) for 6D Pose Estimation, and rotation error for Grasp Pose. For ReArt-
Mix, we use the mean average precision (mAP) to report experimental results, which are
evaluated under both IoU and pose error (rotation and translation error). Note that we report
the mean error of all the parts for each metric on 6D Pose Estimation.

Implementation Details. During the training process, we preprocessed the data by
downsampling the input point clouds to 2048 points before feeding them into the network
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Table 1: Comparison with state-of-the-art on ArtImage [26]. Note that we report mIoU for
Part Segmentation, mean rotation error (◦) and mean translation error (m) calculated by all
the parts for 6D Pose Estimation, mIoU for Affordance, and rotation error (◦) for Grasp
Pose. The up or down arrows indicate higher or lower values corresponding to better results.

Category Method Part Seg-
mentation (↑)

6D Pose Estimation Manipulation Prediction
Part-level (↓) Object-level (↓) Affordance (↑) Grasp Pose (↓)

Eyeglasses

FPFH [21] 0.34 32.7 0.367 32.4 0.296 0.34 38.1
DAISY [5] 0.37 31.5 0.344 31.6 0.286 0.39 36.8

AH-Where [10, 18] 0.93 16.4 0.229 - - 0.96 37.1
ICFA-4 (Ours) 0.97 4.1 0.100 4.2 0.107 0.98 16.9

Scissors

FPFH [21] 0.37 27.1 0.107 27.1 0.096 0.37 30.0
DAISY [5] 0.40 26.5 0.101 26.8 0.089 0.41 28.6

AH-Where [10, 18] 0.85 2.5 0.030 - - 0.85 27.6
ICFA-4 (Ours) 0.84 6.1 0.044 5.8 0.038 0.84 17.1

Laptop

FPFH [21] 0.45 30.8 0.240 31.6 0.207 0.45 27.8
DAISY [5] 0.51 30.2 0.229 29.3 0.187 0.45 27.3

AH-Where [10, 18] 0.90 4.4 0.049 - - 0.90 27.8
ICFA-4 (Ours) 0.95 2.2 0.035 2.1 0.037 0.95 14.7

Dishwasher

FPFH [21] 0.60 30.9 0.379 30.6 0.229 0.60 25.0
DAISY [5] 0.61 28.9 0.358 28.8 0.201 0.67 23.8

AH-Where [10, 18] 0.95 4.4 0.091 - - 0.95 24.8
ICFA-4 (Ours) 0.98 2.3 0.076 2.1 0.062 0.98 15.1

Drawer

FPFH [21] 0.43 30.0 0.395 29.4 0.235 0.46 25.2
DAISY [5] 0.48 28.3 0.369 28.8 0.212 0.47 24.6

AH-Where [10, 18] 0.68 3.3 0.108 - - 0.87 25.6
ICFA-4 (Ours) 0.69 2.7 0.098 2.5 0.089 0.89 14.3

for training. When training the PointNet++ [19], we used the Adam optimizer with an initial
learning rate of 0.001 and a weight decay rate of 0.0001. The learning rate decay step size
was set to 20, and the learning rate decay factor was set to 0.5. All the experiments are
implemented on four NVIDIA GeForce RTX 4090 GPUs with 24GB memory.

Baselines. For a fair comparison, we introduce two types of baselines, i.e., classical
feature extraction for training and deep learning-based method. The former is more inter-
pretable, while the latter can iterate over a larger search space to obtain the optimal re-
sults. Classical feature extraction for training include DAISY [5], and FPFH [21]. How-
ever, since there is no existing integrated framework, we zip the ANCSH [10] technique
and Where2art [18] technique into a framework named AH-Where. Concretely, we use the
former for 6D pose estimation and the latter for manipulation prediction.

6.2 Experiments on ArtImage Dataset
Comparison with state-of-the-art on ArtImage can be seen in Tab. 1. Compared with classical
feature extraction for training (i.e., FPFH [21] and DAISY [5]), our ICAF-4 demonstrates
better performance in all the metrics. For example, considering the category Eyeglasses, our
method achieves significant performance improvement (0.98 ours vs 0.39 in DAISY [5] for
affordance). Compared with deep learning based methods, our method can still maintain the
same performance advantages. Concretely, regarding pose estimation, our ICAF-4 achieves
4.1◦ and 0.100m error, outperforming the 16.4◦, 0.229m in AH-Where. Also, we achieve a
higher affordance (0.98) and a lower grasp pose error (16.9◦). It proves that the anchor-based
training strategy facilitates the multi grasp poses alignment.

Additionally, we show the qualitative results on ArtImage in Fig. 4. We can observe that
our method could generate more grasp poses, effectively extending the diversity of action-
able possibilities at each point. We believe this can facilitate the downstream tasks, such as
Interactive perception, and imitative learning for embodied AI.
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Figure 4: Qualitative results on ArtImage. Note that partial grasp poses are visualized for
a better view.

Effectiveness of Anchor. To further investigate the effectiveness under different anchor
size, we conduct the effectiveness experiment on ArtImgae, which ranges from 10, 20, 30,
and 45. Quantitative results can be seen in Tab. 2. We can observe that ICAF-4 achieves
similar performance when the anchor size ranges from 10 to 45, which doesn’t work as
expected: as the anchor size increases, so does the performance. This confirms the robustness
of our anchor-based mechanism in another way. Moreover, compared to the direct grasp pose
regression, our method achieves better performance (Ours 14.7◦ vs direct regression 27.8◦
of Latptop). It can be concluded that the anchor-based training strategy can effectively train
the manipulation of articulated objects compared to the prior arts.

Table 2: Effectiveness of Anchor test on ArtImage [26]. we report mIoU for Affordance,
and rotation error (◦) for Grasp Pose . "-" means the direct grasp pose regression.

Category Metric Anchor Size
- 10 20 30 45

Eyeglasses Affordance 0.96 0.97 0.98 0.97 0.98
Grasp Pose 37.1 17.5 17.2 17.1 16.9

Scissors Affordance 0.85 0.84 0.84 0.85 0.85
Grasp Pose 27.6 17.9 17.4 17.2 17.1

Laptop Affordance 0.90 0.93 0.94 0.95 0.95
Grasp Pose 27.8 15.2 14.9 14.7 14.7

Dishwasher Affordance 0.95 0.97 0.96 0.97 0.98
Grasp Pose 24.8 15.6 15.3 15.1 15.1

Drawer Affordance 0.87 0.85 0.86 0.87 0.89
Grasp Pose 25.6 14.7 14.7 14.4 14.3

6.3 Experiments on ReArtMix Dataset
Quantitative results of ReArtMix are reported in Tab. 3. In detail, our method achieves high
mAP under most of the metrics, especially for the manipulation Prediction (e.g. 0.99 and 0.98
on the grasping affordance of Cutter and Drawer ). We conjecture that our optimization
between each branch is well-handled. Qualitative results can be seen in Fig. 5. It can be
concluded that our method can perform well in this scenario.

Table 3: Quantitative results on ReArtMix. We report mAP@IoU75 for Part Segmentation,
mAP@(5◦, 5 cm) within all the parts’ mean error for 6D Pose Estimation, mAP@IoU75 and
mAP@IoU95 for Affordance, and mAP@(5◦) and mAP@(10◦) for Grasp Pose.

Category Part Seg-
mentation

6D Pose Estimation Manipulation Prediction
Part-level Object-level Affordance Grasp Pose

Box 0.98 0.91 0.89 0.98 0.78 0.22 0.42
Cutter 0.99 0.67 0.66 0.99 0.84 0.24 0.44
Drawer 0.98 0.93 0.91 0.98 0.87 0.23 0.44
Scissor 0.99 0.80 0.76 0.99 0.93 0.24 0.43
Stapler 0.99 0.62 0.60 0.99 0.98 0.24 0.45
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Figure 5: Qualitative results on ReArtMix. Note that partial grasp poses are visualized for
a better view.

6.4 Demonstrations on the Real World
To assess the generalization capability of our proposed ICFA-4 framework, we conduct ex-
periments aiming to evaluate its performance in real-world scenarios. Qualitative results can
be seen in Fig. 6. It can be observed that our method can perform well in grasping articulated
objects accurately under real-world conditions.

Figure 6: Qualitative results on real-world scenarios.

7 Conclusion
This paper targets at solving the Category-level Visually Articulated object Perception task
thus proposes an integrated framework namely ICAF-4 that is capable of an end-to-end pro-
cessing of four major articulation related tasks in a single forward pass: object detection, part
segmentation, pose estimation and manipulation prediction. To support the network training,
we provide rich and complete grasp annotations for two popular benchmarks ArtImage and
ReArtMix. During the grasp pose prediction branch, we propose an anchor-based strategy
to boost the prediction performance. We evaluate our method on the synthetic datasets and
real world scenarios with exceptional performance in integrating these tasks for articulated
object perception and manipulation.
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