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Cellular Network Traffic Prediction Based on Correlation
ConvLSTM and Self-Attention Network

Xuesen Ma , Biao Zheng , Gonghui Jiang , and Liu Liu

Abstract— Predicting the future dynamicity of the network
traffic are crucially important to support the 5G intelligent
system and automated network management. In this letter,
we propose a Correlation-based ConvLSTM and Self-Attention-
based Network (CCSANet) to accurately predict complex cellular
network traffic. In the proposed CCSANet, the correlation layer
is leveraged in ConvLSTM to improve the ability of extracting
consecutive spatial features. Additionally, the self-attention is
adopted to aggregate the ability of extracting the dependency
between external factors feature and network traffic feature.
Experimental evaluations on real-world cellular network traf-
fic datasets demonstrate the effectiveness of CCSANet, which
outperforms the state-of-the-art (SOTA) methods.

Index Terms— Cellular traffic prediction, correlation layer,
ConvLSTM, self-attention mechanism.

I. INTRODUCTION

NETWORK traffic prediction (NTP) [1] refers to the
estimation of traffic data volume in the future. With

the predicted traffic data, proactive measures can be taken to
mitigate the network congestion and outage caused by burst
transmissions in the communication network. Therefore, NTP
provides the decision basis of communication network man-
agement and optimization [2]. Predicting the future dynamicity
of the network traffic is crucially important to support the 5G
intelligent system and automated network management [3].

In recent works, NTP has been modeled as a time series
analysis problem, which is generally categorized into clas-
sic prediction methods and Neural Network (NN) predic-
tion methods. Classic prediction methods are mainly based
on statistics or probability distributions, such as α-stable
distribution [4], Autoregressive Integrated Moving Average
(ARIMA) [5], and covariance function [6]. However, most of
these methods generally rely on the mean value of historical
traffic and often fail to predict complex network traffic accu-
rately.

Compared with the classic prediction methods, the
NN-based methods can better extract network traffic with
complex characteristics, such as Long Short-Term Memory
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neural network (LSTM) [7], etc. In the NTP problem, these
methods have comprehensively studied the characteristics of
cellular networks, which have shown that changes in commu-
nication traffic have both temporal and spatial autocorrelation.
However, while LSTM focuses mainly on temporal features,
the ability to extract spatial correlations needs improvement.

To further model the spatial dependencies of network traf-
fic, Convolutional Neural Network (CNN) is used in NTP.
Zhang et al. [8] proposed a cellular traffic prediction method
based on a convolutional neural network (STDenseNet).
In [9], the authors proposed a new hybrid spatiotemporal
network (HSTNet) and considered the time characteristics to
enhance the NTP accuracy. While in [10], the author consid-
ered more external factors such as base stations (BSs), points
of informations (POIs), and Socials. Besides, they proposed
the STCNet based on convolutional LSTM (ConvLSTM) [11]
to model temporal and spatial dependencies. Shen et al. [12]
proposed a time-wise attention aided convolutional neural
network (TWACNet) structure for citywide cellular traffic
prediction. Experimental results demonstrated the effective-
ness of the self-attention mechanism. These methods have
comprehensively studied the spatial characteristics of cellular
networks. Meanwhile, these methods have indicated that mod-
eling correlation between the current and previous features is
important for NTP. However, these methods primarily extract
spatial correlations using CNN or ConvLSTM and may not
fully capture the spatial dependence between adjacent features.
This limitation could lead to inadequate characterization of
consecutive features. Moreover, the existing work indicates
that ConvLSTM often shows more effectiveness than the dense
convolution-based methods [10].

This letter proposes a cellular NTP model called CCSANet,
based on Correlation ConvLSTM and Self-Attention. The
model addresses the issues mentioned earlier by leveraging
the correlation layer to calculate the correlation between
two consecutive cellular traffic features. This technique is
widely used in computer vision to model consecutive spatial
features [13]. In addition, the self-attention (SA) mechanism
is used to aggregate the ability of extracting the dependency
of external factors and network traffic features. Experimental
results show the effectiveness of CCSANet over existing NTP
methods.

II. DATA OBSERVATION AND ANALYSIS

A. Citywide Cellular Traffic Dataset

The dataset used in this letter is the Telecom Italia Big Data
Challenge, which is widely used in the field of NTP [14] and
publicly accessible. The dataset contains three real network
traffic data (SMS, Call, and Internet) recorded in Milan, Italy
for a period of two months. The city of Milan is divided
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Fig. 1. The temporal correlation for network traffic.

Fig. 2. The spatial distribution and correlation for network traffic.

into H × W sub-area of units, where H and W represent
the number of rows and columns of cells. Specifically, the
dataset covers an area of 0.0552 km2 divided into a grid of
10,000 cells, and H = W = 100. The value of each cell
represents the statistical value of traffic in the area.

B. Data Analysis
1) Temporal Domain: Fig. 1 shows the SMS, Call, and

Internet traffic volume for a given cell as a function of time.
It can be seen that the traffic dynamic patterns of the three are
similar. The traffic follows obvious periodicity, especially the
traffic value on weekends is lower than that on weekdays.

2) Spatial Domain: Fig. 2 illustrates the spatial distribution
of a snapshot of internet traffic. As expected, the traffic is
unevenly distributed throughout the city, with denser traffic in
urban centers than in suburbs. Despite these differences, there
is still a spatial correlation between traffic in different areas
that a prediction model should be able to capture. To measure
this correlation, we use the widely used Pearson correlation
coefficient ρ [15] to assess the relationship between the target
cell x(i,j) and its surrounding cell x(i′,j′).

ρ=
cov

(
x(i,j), x(i′,j′)

)
σx(i,j) σx(i′,j′)

, (1)

where cov denotes the covariance operator and σ represents
the standard deviation. In Fig. 2(b), we choose the cell with
coordinates (4,4) as the target cell and compute its Pearson
correlations with other cells according to Eq. (1). It can be
observed that there is indeed a correlation among cells, which
has a great relationship with the distance. At the same time,
although the cells (5,3) and (5,5) have the same distance from
the target cell, they may have different correlation values
0.27 and 0.89 due to external factors. It shows that the
correlation may relate to other factors besides spatial distance.
Therefore, we need to investigate novel methods to capture the
spatiotemporal latent correlations of cellular network traffic.

III. THE PROPOSED PREDICTION MODEL

This section introduces the proposed CCSANet, which
mainly consists of four modules: Corr-ConvLSTM,

Fig. 3. Overview of the proposed CCSANet.

Self-Attention Module, Time Embedding, and Fusion Output
Module, as shown in Fig. 3. The model takes Xc,h, Xe,
and Xd as inputs. Specifically, Xc,t denotes network traffic
flow at time t, where c ∈ {sms, call, internet}. To represent
the historical network traffic flow, Xc,h is defined as
Xc,h := [Xc,t−h,Xc,t−(h−1), . . . ,Xc,t] ∈ Rh×H×W . Then
the NTP output X̂c,p ∈ Rp×H×W can be defined as:

X̂c,p = CCSANet (Xc,h,Xe,Xd) . (2)

A. Corr-ConvLSTM

Firstly, we extract the multi-channel features ft,k and ft−1,k

of the input Xc,t and Xc,t−1 through the convolution opera-
tion, where ∗ denotes the convolution operator, k is the number
of channels and k ∈ {1, 2, 3}.

Secondly, the correlation Ct,k of each channel of two con-
secutive cellular traffic features are calculated by correlation
function (CF) along the channel dimension, and the CF is dot-
product operator in this letter. The correlation of the k channels
is concatenated to obtain the correlation map Ct.

ft,k = Wt,k ∗Xc,t + bt,k, (3)
Ct,k = CF (ft−1,k, ft,k) , (4)

Ct = concat (Ct,1, Ct,2, Ct,3) . (5)

Thirdly, the correlation map Ct is then passed into a convo-
lutional layer and a global average pooling layer (GAPL) [16].
Finally, we obtain the factor ut, which measures the dynamic
change between two consecutive cellular traffic features.

Co
t = Wc ∗Ct + bc, (6)

ut = σ(GAPL(Co
t )), (7)

where Wt,k,Wc and bt,k,bc denote the weights and bias for
the convolutional layer respectively, Co

t ∈ RH×W .
We use ut to decide the correlation information between

two consecutive cellular traffic features and integrate it into
ConvLSTM. Then Corr-ConvLSTM calculates input Xc,t by
the following formula:

it = σ(Wxi ∗ (1− ut)Xc,t + Whi ∗ utHt−1 + bi),
ft = σ(Wxf ∗ (1− ut)Xc,t + Whf ∗ utHt−1 + bf ),
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gt = tanh(Wxc ∗ (1− ut)Xc,t + Whc ∗ utHt−1 + bc),
Ct = utft ◦ Ct−1 + (1− ut)it ◦ gt,

ot = σ(Wxo ∗ (1− ut)Xc,t + Who ∗ utHt−1 + bo),
Ht = ot ◦ tanh(Ct), (8)

where σ (·) denotes the activation function, and ◦ denotes the
Hadamard product. W∗i, W∗f , W∗c, W∗o and bi, bf , bc, bo

denote the learnable weights and bias respectively.
it, ft, gt, Ct, ot are referred to as input, forget, input
modulation, cell and output gates. Finally, we can get the
output Ocorr ∈ Rp×H×W of Corr-ConvLSTM module.

B. Self-Attention Module
We adopt the self-attention module to extract feature rep-

resentations of external factors (e ∈ {BSs, POIs, Socials}).
The external input Xe is mapped into different feature spaces
as the query: Qe = WqXe ∈ Rdk×N , the key: Ke =
WkXe ∈ Rdk×N and the value: Ve = WvXe ∈ Rdv×N ,
where {Wq,Wk,Wv} is a set of weights for 1 × 1 convo-
lutions, dk and dv are the number of channels, and where
N = H ×W .

The similarity scores of each pair of points are calculated
by applying the matrix multiplication as:

e = QT
e Ke

/√
dk ∈ RN×N . (9)

The similarity between the i-th point and the j-th point can
be indexed as ei,j =

(
XT

e,iW
T
q

)
(WkXe,j)

/√
dk, where the

Xe,i and the Xe,j are feature vectors with the shape dk × 1.
Then the similarity scores are normalized along with column:

αi,j = exp (ei,j)

/
N∑

k=1

exp (ei,k), i, j ∈ {1, 2, . . . , N} .

(10)

The aggregated feature of the i-th location is calculated with
a weighted sum across all locations:

Zi =
N∑

j=1

exp (αi,j (WvXe,j)), (11)

where WvXe,j ∈ Rdv×1 is the j-th column of the value Ve.
Then, Z ∈ Rdv×N is input in the fully connected layer and the
output is vector oe ∈ RpN×1. Finally, The vector is reshaped
into a output Oe ∈ Rp×H×W .

oe = σ (WeZ + be) , (12)
Oe = Reshape (oe) , (13)

where We and be are learnable parameters of the fully
connected layer.

C. Time Embedding
We can see in the previous data analysis that data

characteristics are strongly correlated with cellular network
traffic. We extract four kinds of date data, is_weekday (1/0),
is_weekend(1/0), day_of_week(0 − 6), and
hour_of_day(0 − 23), and treat them as features. The
33-dimensional feature vector Xd combines the four kinds of

data and is input to the two-layer fully connected layer, and
the output is vector vd ∈ RpHW×1. The vector is reshaped
into a output Od ∈ Rp×H×W through a reshape layer and
merged with the input result of the Fusion Output Module.
The calculation process is as follows:

vd = σ
(
W(2)

d

(
σ(W(1)

d Xd + b(1)
d )

)
+ b(2)

d

)
, (14)

Od = Reshape (vd) , (15)

where Wd and bd are learnable parameters of the fully
connected layer.

D. Fusion Output Module
It can be seen from the above analysis that the traf-

fic of different cells is not only related to the correlation
of continuous traffic data but also related to the period.
To capture this relationship, we first fuse the correlation
and periodic features to obtain the fused feature Oall. Then
we extract the fused feature through the multiple Dense-
Block(Conv+BN+ReLU+DeformConv). Finally, the predicted
X̂c,p is obtained through the sigmoid activation function.

Oall = concat (Ocorr,Oe,Od) , (16)

X̂c,p = σ (DenseBlock (Oall)) . (17)

IV. EXPERIMENTS

A. Experimental Process and Parameter Settings
1) Dataset and Parameter Settings: The experimental

dataset comes from Telecom Italia, and its preprocessing
method in NTP area [10]. We split the three datasets (SMS,
Call, and Internet) into training and test sets with 1320 (55
days × 24 hours) and 168 (7 days × 24 hours), respectively.
To avoid overfitting in training, we randomly divide part data
from the training set as the validation set. The CCSANet
adopts the widely used Adam optimizer [17] and is trained
for 300 epochs with a batch size of 32. The initial learning
rate is set to 0.01, and when the epoch number increases
to 50% and 75%, the learning rate is reduced by a factor
of 10 and 100, respectively. In the convolution module, the
last layer has 1 filter with kernel size of 1 × 1 and sigmoid
activation function. Besides, the rest layer have 16 kernel sizes
of 3× 3 filter and ReLU activation function.

2) Baseline Methods and Evaluation Metrics: We compare
CCSANet with the following widely used NTP methods to
evaluate the performance. The baselines including ARIMA [5],
LSTM [7], STDenseNet [8], STCNet [10], HSTNet [9],
and TWACNet [12]. STCNet and TWACNet are the SOTA
ConvLSTM-based and attention-based methods in cellular
NTP respectively.

We adopt two evaluation metrics of Mean Absolute Error
(MAE) and Root Mean Squared Error (RMSE) to evaluate
the model, which are widely used to measure the difference
between the value of ground truth and prediction value [18].

B. Experiment Analysis
We experimentally compare the proposed CCSANet with

baseline models on three different cellular network traffic
datasets, and the evaluation results are plotted in Table I.
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TABLE I
EXPERIMENTAL RESULTS OF RMSE AND MAE

Fig. 4. The snapshots of NTP results.

As illustrated in this Table, ARIMA has the highest MAE
and RMSE on the three traffic datasets, because it only
considers the historical temporal characteristics of the data
without accounting for other dependencies. The performance
of LSTM is better than statistical methods but worse than other
deep learning methods. STDenseNet ignores the influence of
external factors, while HSTNet only takes temporal attributes
into account and neglects other external factors like BSs infor-
mation and POIs distribution. TWACNet adopts a convolution-
based network, but its performance is lower than that of the
ConvLSTM-based methods. STCNet uses the ConvLSTM-
based network but does not incorporate the Self-Attention
and correlation layer to enhance the feature extraction. All
of the above works primarily rely on networks (e.g. CNN,
ConvLSTM, and SA) to extract hidden information, which
may not model the consecutive spatiotemporal features.
The CCSANet achieves the best performance compared to the
baseline methods. On the one hand, CCSANet employs the
correlation layer in ConvLSTM to improve its ability to
extract consecutive spatiotemporal features. On the other hand,
CCSANet incorporates the self-attention mechanism to aggre-
gate the ability to extract the dependency between external
factors and network traffic feature.

To give an additional perspective on the effectiveness of
NTP, we plot a randomly selected snapshots of the Internet
for NTP results in Fig. 4. Compared to the baseline methods,
CCSANet shows better predictive performance, as evidenced
by the very similar prediction results of every cell compared
to the ground truth in Fig. 4(d).

V. CONCLUSION

In this letter, we propose a novel cellular NTP method
called CCSANet, which enhances the ability of extracting
consecutive spatial features by adopting the correlation layer
in ConvLSTM. Additionally, the method aggregates the ability
of extracting the dependency of external factors and net-
work traffic feature by adopting the self-attention mechanism.
Experimental results show that CCSANet outperforms the
SOTA method in terms of RMSE and MAE on real-world
cellular network traffic datasets. This demonstrates our pro-
posed method can be used to improve the accuracy of cellular
network traffic prediction.
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