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Abstract

BACKGROUND: Fast identification of damaged soybean seeds has undeniable importance in seed sorting and food quality.
Mechanical vibration is generally used in soybean seed sorting, but this can seriously damage soybean seeds. The convolutional
neural network (CNN) is considered an effective method for location and segmentation tasks. However, a CNN requires a large
amount of ground truth data and has high computational cost.

RESULTS: First, we propose a self-supervision manner to automatically generate ground truths, which can theoretically create
an almost unlimited number of labeled images. Second, instead of using popular CNNs, a novel invertible convolution (involu-
tion)-enabled scheme is proposed by using the bottleneck block of the residual networks. Third, a feature selection feature pyr-
amid network (FS-FPN) based on involution is designed, which selects features more flexibly and adaptively. We further merge
involution-based backbones and FS-FPN into a unified network, achieving an end-to-end seed location and segmentation
model; the best mean average precision of location and segmentation achieved was 85.1% and 81% respectively.

CONCLUSION: The experimental results demonstrate that the proposedmethod greatly improves the performance of the base-
line network with faster speed and fewer parameters, enabling it to detect soybean seeds more effectively.
© 2022 Society of Chemical Industry.

Keywords: high-throughput soybean seeds; location; segmentation; invertible neural networks; feature pyramid network

INTRODUCTION
The soybean is one of the most important leguminous species, rank-
ing among the top five major crops in the world. It is widely con-
sumed for its high protein and vegetable oil content.1 Crop yield
and consumption of soybean depend highly on the quality of soy-
bean seeds. The quality is strongly associated with the economic
value, which is of great significance to farmers and even the country.
To reach a high standard of seeds quality, it is necessary to develop
fast and accurate methods of detecting the appearance quality of
soybean seeds. The most widely used grading machine uses
mechanical vibration to select the soybean seeds. This can effectively
separate large-sized debris and seeds with non-standard shapes.
However, the vibration method can cause serious damage through
violent collisions; and it cannot detect low-grade seeds, such as
insect-bored seeds, spotted seeds, and heterochromatic seeds with
a similar shape to perfect soybean seeds.
The development of machine vision has led to it becoming wide-

spread in the field of agriculture,2,3 such as in identifying the num-
ber of aflatoxin-contaminated pistachio and cashew nuts,4

objective and accurate identification of tea grading,5 discriminating
pepper seeds,6 and classifying wheat grains.7 Momin et al.8 devel-
oped a method in the detection of materials other than grain in
soybean harvesting. Tan et al.9 used traditional computer vision
technology with back-propagation neural networks to classify four

types of damaged soybean seeds. Liu et al.10 analyzed the image
characteristics of different damaged soybean kernels. Although tra-
ditional image-based machine vision studies are modified to solve
the challenges of detecting soybean seeds, there are still some crit-
ical problems that hinder its development. First, shadow noise and
inconsistent illumination conditions can occur during capturing
seed images. Second, color difference and shape difference can
degrade the accuracy of detection. Third, densely sampled seeds
cannot be effectively separated into different distributions. The
classic manual-designed machine vision methods are sensitive to
the noise, illumination, and texture of objects, which show weak
robustness and poor generalization ability.
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Recently, convolutional neural networks (CNNs) have become dom-
inant in the field of deep learning, including object detection,11,12

object segmentation,13,14 and classification.15 CNNs have also been
used in agriculture research, Mubin et al.16 predicted and counted oil
palms in satellite imagery by utilizing two different CNNs. Wang
et al.17 proposed amulti-projection pest detectionmodel to overcome
the imbalance of classes. Li et al.18 designed a coarse-to-fine network
for aphid detection in dense distribution regions. Veeramani et al.19

used a novel application for a deep convolutional network to sort hap-
loid maize seeds. The study outperformed existing state-of-the-art tra-
ditional machine vision classifiers. Steinbrener et al.20 showed an easy
way to classify hyperspectral images with an RGB pre-trained network.
Bosilj et al.21 explored the effectiveness of knowledge transfer between
CNN-based classifiers for different crop types andobtained a reduction
in training times of up to 80%.Misra et al.22 proposed the use of Spike-
SegNet to classify and count the spikes ofwheatplants, and the testing
performance demonstrated the proposed approachwas effective and
robust. CNN-based algorithms can improve recognition accuracy and
greatly simplify the complex process of feature extraction. However,
training adeep-learningmodelwith strong robustness andgeneraliza-
tion ability requires a huge amount of labeled data. In addition, most
CNNs rely on deep layers and complex computation, and such pon-
derousness undoubtedly makes the existing models less practical for
resource-constrained applications.
Involution has symmetrically inverse inherent properties com-

pared with standard convolution. It can promote the efficiency
of visual recognition in a lightweight manner by embedding
switchable and scalable modeling into the representation learn-
ing paradigm. Invertible CNNs (INNs) are characterized by the
mapping from inputs to outputs being bijective, and both map-
pings have a tractable Jacobian. Meanwhile, the mapping of for-
ward and inverse are efficiently computable.23,24 Concisely
speaking, INNs are very suitable for seed recognition tasks owing
to the low complexity in the spatial and channel domains.
In this paper, inspired by successful applications in Varol et al.25 and

Ward et al.,26 we first propose to construct a primitive repository that
is composited from single soybean seeds and rebuild the primitives
to generate sufficient training data with automatically generated
ground-truth annotations. In this way, our model can be trained in
a self-supervision manner on the composed dataset, and the
primitive-trained model can be easily transferred to real-world data.
Second, to achieve the purpose of fast location and segmentation
of the high-throughput soybean seeds, we leverage the inherent
advantages of Mask R-CNN27 and involution, proposing an
involution-based Mask R-CNN; we term this model with involution
backbone as Inv-Mask. Third, we design the feature selection
(FS) feature pyramid network (FPN) based on involution to tackle
the serious information loss in a standard FPN. The FS-FPN ensures
the effectiveness in extracting multiscale features, generating more
valuable features and enhancing semantic consistency.
In summary, our primary contributions are as follows:

• We propose a self-supervised method of constructing sufficient
training data with automatically generated ground-truth anno-
tations. This can significantly decrease the labor cost for data
creation and conquer the scarcity of data in training a task-
specified agricultural model.

• We build a hybrid synthetic/real dataset of damaged soybean
seeds. We train and evaluate our model from simulation data to
real-world data. This is the first attempt to utilize a synthetic data-
set for the detection of high-throughput damaged soybean seeds.

• We present the Inv-Mask model, which is an involution-based effi-
cient network with faster speed and higher performance. We first
demonstrate the involution-powered deep-learning model works
well in the field of seeds location and segmentation.

• We design a novel FS-FPN based on involution operation to
aggregate more discriminative features through attention-
guided FS. FS-FPN not only leverages the inherent feature hier-
archy, fusing adjacent features through lateral connections and
a top-down pathway but also relieves the information loss in
dimension reduction.

MATERIALS AND METHODS
Dataset
Synthetic dataset creation
We randomly chose 700 soybean seeds, including broken kernels,
heterochromatic kernels, insect-bored kernels, moldy kernels, perfect
kernels, split kernels, and spotted kernels. We place every single seed
above a platform with a black background. The seed images were
capturedusing anMV-CE200 industrial camera (HikvisionDigital Tech-
nology Co. Ltd, Hangzhou, China) and saved as individual image files.
We used a self-supervision manner to build the training data for

learning primitive knowledge. Specifically, we prepared 1000 black
background images as the background image set (BIS) with a fixed
size of 1024 × 1024 px2. Then, for the 700 single soybean seed
images, we removed the background regions and prepared a seed
image set (SIS). The BIS and SISwere used to create a synthetic image
dataset in a self-supervised manner, the process is described as fol-
lows. The initial background of SIS is black, we used a classic thresh-
old segmentation algorithm to subtract the background and get
regions of interest, such as the seed area, which is small compared
with the entire image. Second, an image was randomly chosen from
the BIS and pasted to a raw image canvas with the same size. Third,
we randomly selected a seed image from the SIS, and the rotation
angle was randomly set. After getting the processed seed image,
we paste it on the coordinate x,yð Þ of the raw image canvas. The
coordinate was randomly determined but restricted to a certain
algorithm, namely constrained domain randomization, as shown
in Eqn (1). This formula was used to make sure that the image
would not exceed the canvas size and control the distance of each
seed. In addition, Eqn (1) ensures the overlapping proportion of
the seed pasted area. If the distance or the overlapping value can-
not meet the minimum threshold, pasting is exited and restarted
to choose a new coordinate. During the pasting process, generate
the corresponding mask by creating a black background canvas
and coloring the seed area with a specific color. This operation
automatically annotates each seed using different colors. Finally,
the operation was repeated until the coordinate cannot find a
position that meets our requirements. The procedure of creating
the synthetic image dataset is shown in Fig. 1.

coord xi ,yið Þ=
Cx−Bw=2≤ xi ≤Cx +Bw=2

Cy−Bh=2≤ yi ≤ Cy +Bh=2 i=1

sign* xi ,yið Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j xi−xj jj yi−yj j

q
≥ T I,Jð Þ i>1,1≤ j ≤ i−1ð Þ

8>><
>>:

ð1Þ
sign* xi ,yið Þ= 1 0,0ð Þ≤ xi ,yið Þ≤ Bh−Ih,Bw−Iwð Þ

0 otherwise

�
ð2Þ

T I,Jð Þ=⊎dDiagonal I,Jð Þ ð3Þ
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where coord xi ,yið Þ is the coordinate of the ith seed image pasted
on the canvas, Bh and Bw represent the height and width of the
canvas respectively, Cx and Cy are the center points of the input
image, sign* xi ,yið Þ is a flag function indicating whether the coor-
dinate will be allowed in the operation, and T I,Jð Þ is the threshold
distance and determines whether the seed image is saved or not.
In Eqn (2), Ih and Iw represent the height and width of the seed
image respectively. The pasted seed image should be inside the
canvas; if not, we discard the coordinate. T I,Jð Þ depends on the
diagonal distance of the ith to jth (1st∼ i – 1st) seed image. We
also propose a hyperparameter ⊎d to control the density of past-
ing data, as shown in Eqn (3).

Real-world dataset creation
After we created the synthetic dataset using our the generation
algorithm, we also prepared a real damaged soybean seed data-
set with image size 1024 × 1024 px2. We randomly put soybean
seeds on a conveyor and shot them during transmission. In the
acquisition process, to simulate the uncontrollable lighting condi-
tions in the real environment, we used two adjustable light
sources to enhance the authenticity of the dataset. Then, we
removed seed images that were incomplete or at the edges from
all images, and 500 images were finally retained (as shown in Fig.
2). The real images were labeled using the professional annota-
tion software LabelMe.28

Figure 1. Synthetic dataset generation process. The gray mask and color mask will be generated while generating synthetic images. ROI: region of
interest.
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Model details
Architecture of our method
Mask R-CNN27 follows the philosophy of Faster R-CNN11 and extends
a new branch for the instance segmentation tasks. In this way, the
segmentation branch parallels with the branch of classification and
detection in Faster R-CNN, which is an extremely efficient design to
generalize to other tasks. In general, Mask R-CNN consists of four
parts: (i) an encoder networkmodel to extract features, namely back-
bone; (ii) an FPN to aggregate features at different scales; (iii) a region
proposal network to generate detection bounding boxes; and
(iv) three heads, namely a classification head, a detection head, and
a segmentation head. Our Inv-Mask model is designed on the basis
of Mask R-CNN, which employs the backbone based on involution.
We show the structure of Inv-Mask + FS-FPN in Fig. 3; we set the
backbone structure the same as ResNet, and the building block
shows in Fig. 4. To be specific, we replace the 3 × 3 convolution layer
in the original ResNetwith involution, andwe retain the 1 × 1 convo-
lution for channel projection and fusion.

Invertible neural networks
INNs are a type of bijective neural network mapping from inputs
to outputs; these not only predict the output given the input,
but also predict the input given an output. The special character-
istic of INNs means they can learn the forward and inverse map-
pings at the same time. INNs can also adaptively assign weights
to different positions, thereby giving priority to the visual ele-
ments with the largest amount of information in the spatial
domain. Various invertible neural networks have been designed:

Maclaurin et al.29 proposed that the hyperparameter gradient is
calculated by using momentum to accurately reverse the dynam-
ics of stochastic gradient descent; and Dinh et al.30 explored a new
flexible architecture for learning highly nonlinear bijective trans-
formations, mapping training data to a factorized distribution
space, and later31 they presented a class of invertible functions
with tractable Jacobian determinants, which performed well in
generative models. Inspired by the former studies, we show the
working principle of invertible neural networks in the following.
INNs must partition the units into two groups in each layer, which
we denote as X1 and X2. Figure 5 shows the architecture of the
invertible block. Each invertible block has inputs X1,X2ð Þ and the
corresponding outputs Y1,Y2ð Þ. We demonstrate this as follows:

Y1=X1

K
exp ℱ X2ð Þð Þ+G X2ð Þ

Y2=X2

K
exp ℱ Y1ð Þð Þ+G Y1ð Þ

ð4Þ

The functions ℱ and G are analogous to those in standard
ResNet,32 and

J
represents the elementwise or Hadamard prod-

uct. Each layer's activations can be easily inverted from the next
layer's activations:

X2= Y2−G Y1ð Þð Þ
K

exp −ℱ Y1ð Þð Þ
X1= Y1−G X2ð Þð Þ

K
exp −ℱ X2ð Þð Þ

ð5Þ

Adeep invertibleneural network ismadeupby stacking these reversible
blocks. In the standard architecture, it is assumed the inputs andoutputs

Figure 2. Real-world images under unstructured illumination.

Figure 3. Structure of the proposed Inv-Mask + FS-FPN. FS-FPN: feature selection feature pyramid network; RPN: region proposal network.
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have the samedimension. If not, we pad the inputs and outputswith an
equal number of zeros if Dimension inputsð Þ<Dimension outputsð Þ.
This enables the interior layers of the network to learn a complex
transformation in a more flexible way and embed features into a
larger presentation space. For designing the experimental net-
work with involution, we imitate the design of ResNet owing to
its excellent architecture. We stack residual blocks as ResNet but
replace the 3× 3 convolution with 3× 3 involution at all bottle-
necks. Considering the channel fusion and projection, we retain
the initial setup of ResNet.

FS-FPN
To remedy the issue that occurred in standard FPN, we propose a
novel FS-FPN, as shown in Fig. 6. The details are described in the
following.

Channel-feature selection block. Feature extraction in FPN usually
uses the lateral connections with 1 × 1 convolution to generate
the same dimension features. The method is simple but suffers

from inevitable information loss due to the direct channel dimen-
sion reduction. As shown in Fig. 6, we propose a channel selection
block (CSB) to emphasize the important feature maps and locate
objects more accurately based on the attention mechanism. The
details of the CSB in Fig. 6 are presented in the following.
Z= Z1,Z2,…,ZN½ � and M= M1,M2,…,MN0½ � present the input and
output FPN layers respectively. Zi= z1,z2,…,zD

� �
and

Mi= m1,m2,…,mD0� �
, where D and D0 represent the number of

feature maps in Zi and Mi respectively. Mi= m1,m2,…,mD0� �
is

the result after involution and Fcs; the purpose is to find the most
valuable feature maps and drop the redundant features. The pro-
cess of CSB is presented as follows:

Φ zdi,j
� �

=W1⊞ W0z
d
i,j

� �

md0
i,j =Fcs Φ zdi,j

� �� � ð6Þ

where i, j is the coordinate in the dth feature map.
W1 �ℝ N×N×Gð Þ× C=rð Þ and W0 �ℝ C=rð Þ×C stand for two linear trans-
formations, where G represents the group number of involution
and r is the reduction ratio.
A CSB is utilized in the process of multiscale feature aggrega-

tion. Different from the general attention mechanism module,
the module we designed is embedded in FPN, reducing the infor-
mation loss during horizontal connection. At the same time, the
CSB could adaptively recalibrate the importance of each channel,
which is inspired by the squeeze-and-excitation network.33 CSB
commits to the meaningful channel of an input image.

Spatial-feature attention block. Since each seed belongs to a key
region in the image, to improve the feature expression of the
key region, we introduce a spatial-feature selection block (SSB)
to utilize the inter-spatial relationship of features. We adopt two
operations, global max pooling and global average pooling, gen-
erating two feature descriptors representing different informa-
tion. Then, the two feature maps are fused by using the
receptive field with the size of k×k, and we apply involution layers
to encode the feature map where to emphasize or suppress. SSB
can be expressed as

Figure 4. Building block of the Inv-Mask backbone. The solid line repre-
sents forward pass, and the dotted line indicates inverse pass.

Figure 5. The forward pass (up) and inverse pass (down) of invertible neural networks.
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Pd
0
=⊞ concat Inv Md0

mp

� �
, Inv Md0

ap

� �h i� �� �
ð7Þ

where Pi= p1,p2,…,pD
0� �
, Md0

mp and Md0
ap denote the feature

maps operated by maximum pooling and average pooling
respectively, and ⊞ is the sigmoid function. In essence,
the spatial information in the original image is transformed
into another space through the SSB, and the key information
is preserved. Then, a weighted mask is generated for
each position and weighted output so as to enhance the spe-
cific target area of interest and weaken the irrelevant
background area.

EXPERIMENTS AND DISCUSSION
Experiment details
Experimental setup
In our experiments, we employed a stochastic gradient descent
optimizer in the training process and set the learning rate to
0.0025 in the initial state, training for a total of 12 epochs. The
weight decay constant was 1×10−3, and the momentum was
0.9. The experimental analysis and data processing were per-
formed using the Pytorch deep-learning architecture on a
machine with an Intel i9-9900 k CPU, 128GB RAM and one piece
of NVIDIA TITAN RTX GPU. Following standard segmentation
detectors' training strategy, the networks we proposed were
pre-trained on the synthetic dataset at first and then trained on
the real-world dataset. All the models were trained by the way
of end-to-end.

Evaluation metrics
Different measures were adopted in object detection and seg-
mentation tasks. In general, true positive (TP), false positive
(FP), true negative, and false negative (FN) are calculated to
reveal the results of a model prediction. Precision and recall rep-
resent the performance from the perspective of prediction
results and real results:

precision=
TP

TP+FP

recall=
TP

TP+FN
ð8Þ

Intersection over union (IoU) is a well-known indicator in detection
and segmentation due to its strict criteria about over‑ and undero-
verlapping. It reflects the overlap ratio of two regions (usually the
predicted area and the ground truth), as shown in Fig. 7. IoU has
two definitions, one being the bounding boxes IoU and the other
being the masks IoU, and they can be calculated as follows:

IoU=
Gb∩Pb
Gb∪Pb

MaskIoU=
Gm∩Pm
Gm∪Pm

ð9Þ

Figure 6. The architecture of the feature selection feature pyramid network (FS-FPN). We display the details of channel selection block (CSB) and spatial-
feature selection block (SSB) in the dashed boxes below.

Figure 7. The intersection-over-union definitions of bounding boxes and
masks. Pb represents the predict bounding box and Gb represents the
ground-truth bounding box. Pm denotes the predict mask area and Gm
denotes the ground-truth mask area.
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Average precision (AP) measures the area under the curves of pre-
cision and recall with different thresholds. AP@50 (AP50) is the
prediction accuracy rate when the IoU = 0.5, AP@75 (AP75) is the
rate when the IoU = 0.75. AP@ 0:5 : 0:95½ � indicates the threshold
levels from 0.5 to 0.95 with step size of 0.05; namely, mean aver-
age precision (mAP).

Experiment results
As mentioned in the ‘Real-world dataset creation’ section, the
synthetic dataset contains 1000 image pairs. We divide this into
three parts: 800 pairs for training, 100 pairs for validation, and
100 pairs for testing. The real dataset contains 500 image pairs.
We also split it into three parts: 350 pairs for training, 100 pairs
for validation, and 50 pairs for testing. We report the evaluation
values mentioned before as the standard Common Objects in
Context (COCO) metrics, we use the bounding box AP (APbb) to
show the accuracy of location and the mask segmentation AP
(APmk) to show the accuracy of segmentation. According to the
COCO evaluation criteria, AP50 is the most important criterion,
and mAP is in second position.

Model performance on synthetic dataset
We first perform the models, including raw Mask R-CNN, our Inv-
Mask, Inv-Mask + CSB, Inv-Mask + CSB + SSB (equivalent to Inv-
Mask + FS-FPN), training from scratch on the synthetic dataset.
The performance of the models is displayed in Table 1. With
almost all groups in the table, the backbones of ResNet50 achieve
a comparable AP to the backbones of ResNet101, so we focus on
the models with the ResNet50 backbone. As we can see, Inv-Mask
achieves a great margin of 8.5% higher bounding box AP50 and
8.4% higher mask AP50 over Mask R-CNN. The CSB and SSB
employed in Inv-Mask further improve the performance in detec-
tion and segmentation. Our model with those two blocks could
surpass the Mask R-CNN by 16.6%/16.6% AP50 and 19.9%/15%
mAP in bounding box and mask respectively. Figure 8 shows
the comparison of Mask R-CNN (a) and our model with the FS-
FPN approach (b) on the heterochromatic category. The
precision–recall curve takes recall as the abscissa and precision
as the ordinate, and the performance of the model can be
reflected by the area below the curve. The larger the area, the bet-
ter the performance of the model. It can be seen intuitively from
the picture, our model shows superior performance over Mask

Table 1. Location and segmentation results on synthetic dataset

Model Backbone APbb50 APbb75 mAPbb APmk
50 APmk

75 mAPmk

Mask R-CNN r50 0.772 0.756 0.692 0.772 0.757 0.590
Inv-Mask 0.857 0.847 0.757 0.856 0.837 0.725
Inv-Mask+CSB 0.932 0.918 0.886 0.932 0.908 0.826
Inv-Mask+CSB+SSB 0.938 0.924 0.891 0.938 0.919 0.840
Mask R-CNN r101 0.711 0.692 0.641 0.711 0.708 0.645
Inv-Mask 0.842 0.834 0.796 0.795 0.775 0.703
Inv-Mask+CSB 0.929 0.915 0.887 0.929 0.915 0.845
Inv-Mask+CSB+SSB 0.925 0.915 0.891 0.925 0.904 0.850

r50 and r101 represent ResNet50 and ResNet101 respectively.
AP: average precision; bb: bounding box; mAP: mean average precision; mk: mask segmentation.

Figure 8. Quantitative evaluation of segmentation performance on the synthetic dataset. Performance comparison on heterochromatic category. FS-
FPN: feature selection feature pyramid network; IoU: intersection over union.
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R-CNN. In terms of qualitative evaluation, we display some of the
results in Fig. 9. The first column shows the raw images, the sec-
ond column shows the Mask R-CNN results, and the third column
shows the Inv-Mask + FS-FPN results. The pink boxes indicate that
bounding boxes overlap occurs during detection in the Mask R-
CNN, but our model performs well in the corresponding positions.
It turns out that the model we proposed could help the popular
Mask R-CNN improve performance on our synthetic dataset.

Model performance on real-world dataset
For the real-world application, we conduct experiments on our
real dataset, and the pre-trained network backbones are those
trained in the synthetic dataset. The results are shown in
Table 2. As we can see, our proposed Inv-Mask pushes the

envelope of precision boundary to a new level. The backbones
of ResNet101 show a similar performance with the backbones
of ResNet50, therefore, we will report the ResNet50 backbone
models as same as the synthetic dataset experiments. Com-
pared with bounding box precision, Inv-Mask could achieve
11.7% AP50 and 12.9% mAP higher than Mask R-CNN. Under
the cooperation of CSB, Inv-Mask could obtains 5% AP50 and
17.1% mAP improvement. In addition, the SSB block could also
helps Inv-Mask+CSB to improve 1.1% AP50 and 0.9% mAP. Com-
pared with mask precision, Inv-Mask achieves 11.7% AP50 and
12.9% mAP higher than Mask R-CNN. Benefit from CSB block,
Inv-Mask could obtains 17.1% AP50 and 12% mAP improvement.
Furthermore, the proposed SSB block achieves the best mask
precision at all IoU thresholds. This indicates that our methods

Figure 9. Visualized results of the synthetic dataset: (A1, B1) raw image; (A2, B2) the result of Mask R-CNN; (A3, B3) the result of Inv-Mask + FS-FPN. The
pink boxes highlight the comparison at the same location. FS-FPN: feature selection feature pyramid network.

Table 2. Location and segmentation results on real-world dataset

Model Backbone APbb50 APbb75 mAPbb APmk
50 APmk

75 mAPmk

Mask R-CNN r50 0.725 0.601 0.542 0.725 0.656 0.546
Inv-Mask 0.842 0.802 0.671 0.842 0.800 0.675
Inv-Mask+CSB 0.892 0.886 0.842 0.892 0.879 0.795
Inv-Mask+CSB+SSB 0.903 0.891 0.851 0.903 0.889 0.810
Mask R-CNN r101 0.722 0.623 0.547 0.721 0.654 0.551
Inv-Mask 0.842 0.793 0.668 0.842 0.812 0.673
Inv-Mask+CSB 0.889 0.885 0.851 0.889 0.885 0.809
Inv-Mask+CSB+SSB 0.892 0.885 0.847 0.892 0.871 0.805

r50 and r101 represent ResNet50 and ResNet101 respectively.
AP: average precision; bb: bounding box; mAP: mean average precision; mk: mask segmentation.
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play a significant role in more precise location and
segmentation.
In order to show our results more intuitively, we visualize some

detection and segmentation results of real-world data in Fig. 10,
with the first column showing the raw images, the second column
showing the Mask R-CNN results, and the third column showing
the Inv-Mask + FS-FPN results. In the enlargements of the result-
ing images of Mask R-CNN, the pink boxes mainly contain bound-
ing boxes overlap occurring during detection, the blue boxes
mainly include category classification errors, and the yellow boxes
are cases of missed detection. In the corresponding positions, our
model performs better than Mask R-CNN. Therefore, we conclude
this certificates the excellent performance of our proposed model
and blocks. The visualization of our experimental results is shown
in Fig. 11.
To further exploit our Inv-Mask + FS-FPN, a detailed comparison

of the results of each category is shown in Table 3. We notice that

the broken kernels have the lowest bounding box mAP, which is
caused by the small size and because they are often obscured
by kernels of other categories. This also leads to poor segmenta-
tion results, and the mask mAP of 0.765 is proof of our specula-
tion. Owing to the prominent features and large size of the
moldy class, the bounding box mAP achieves 0.874. In terms of
segmentation, perfect kernels have the best mask mAP, caused
by the smooth surface without any damage; they can be well dis-
tinguished from other categories during segmentation.

Effectiveness of the model
We compare ourmethods withMask R-CNN in Table 4. All location
and segmentation results of our model outperform Mask R-CNN
with lower floating-point operations (FLOPs) and parameters.
Compared with Mask R-CNN, Inv-Mask reduced the FLOPs and
parameters by 22.58% and 22.68% respectively; Inv-Mask + FS-
FPN reduced the FLOPs and parameters by 26.51% and 29.19%

Figure 10. Real-world dataset result comparison. The left column shows the raw images, the middle column shows the results of Mask R-CNN, and the
right column shows the results of our method. We enlarge some failure segmentation areas of Mask R-CNN; our model performs better in corresponding
positions.
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respectively compared with Mask R-CNN and by 5.08% and 6.17%
respectively compared with Inv-Mask. This further highlights the
effectiveness of our methods, which greatly reduce the computa-
tional cost and parameter counts. The real-time performances of

Mask R-CNN and our methods are demonstrated in Fig. 12. We
can conclude that our methods achieve a good trade-off on
detection/segmentation performance and inference time. This
owes much to the characteristic of involution.

Figure 11. Visualization of the location and segmentation results using our model.

Table 3. Performance of Inv-Mask + FS-FPN on each category

Metric Broken Moldy Spotted Heterochromatic Perfect Insect-bored Split

Bounding box 0.831 0.874 0.837 0.841 0.860 0.855 0.858
Mask 0.765 0.839 0.815 0.790 0.857 0.801 0.803

Table 4. Performance comparison on Mask R-CNN and our methods

Model FLOPs (×109) No. of parameters (×106) APbb50 mAPbb APmk
50 mAPmk

Mask R-CNN (with FPN) 262.91 43.78 0.725 0.542 0.725 0.546
Inv-Mask (with FPN) 203.54 33.85 0.842 0.671 0.842 0.675
Inv-Mask + FS-FPN 193.20 31.76 0.903 0.851 0.903 0.810

The efficiency of our methods is greatly boosted, showing better performance than Mask R-CNN with lower cost. Bold values indicate a comparison
with Mask R-CNN, highlighting the advantages of our model.
AP: average precision; bb: bounding box; FLOPs: floating-point operation\s; mAP: mean average precision; mk: mask segmentation.
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CONCLUSION
In this paper, we propose a novel self-supervision method, work-
ing to automatically generate ground-truth annotations, which
can significantly reduce labor consumption. Using the self-
supervised method, we prove that it can successfully prompt
the neural network to analyze the real-world images of soybean
seeds. Then, we present an involution-based Mask R-CNN, which
is an efficient detector for locating and segmenting. Compared
with the convolution-based model, the new method reverses
the principles of convolution and performs better with lower
computational costs. In addition, we propose an FS-FPN, which
enhances the ability to extract discriminative features by
involution-based FS. Experimental results demonstrate that FS-
FPN could be very compatible with our Inv-Mask model. The
unified network brings a significant improvement in the task of
recognizing soybean kernels. In the future, we plan to further
study low labor cost high-throughput seed detection methods.
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