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In agriculture, aphids always cause major damage in wheat, corn and rape, which signif-

icantly affect the crop yield. Manual aphid counting approaches are often labour-

consuming and time-costing for Integrated Pest Management (IPM). In addition, the results

of existing aphid counting methods based on computer vision are not satisfactory due to

the complex background and the dense distribution. In order to address these problems, a

novel multi-branch convolutional neural network (Mb-CNN) with density map for aphid

counting is developed in this paper. In this approach, the aphid images are firstly fed into

multi-branch convolutional neural networks, which have three branches for extracting the

feature maps of different scales. Then, an aphid density map is generated via Mb-CNN,

which contains the distribution information of aphids. Finally, the counting of aphids is

estimated by using the density map. Experiment results on our dataset demonstrate that

our Mb-CNN achieves the performance of 10.22 Mean Absolute Error (MAE) and 12.24 Mean

Squared Error (MSE) in the aphid counting, which outweighs the state-of-the-art

approaches.

© 2021 IAgrE. Published by Elsevier Ltd. All rights reserved.
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Nomenclature

Abbreviations

Mb-CNN multi-branch convolutional neural network

IPM integrated pest management

CNN convolutional neural network

MAE Mean Absolute Error

MSE mean squared error

mAP mean average precision

Faster R-CNN faster R-CNN: towards real-time object

detection with region proposal networks

FPN feature pyramid networks for object detection

YOLO you only look once: unified, real-time object

detection

Cascade R-CNN cascade R-CNN: delving into high

quality object detection

MCNN multi-column convolutional neural network

FCOS fully convolutional one-stage object detection

CRNet crowd counting via cross-stage refinement

networks

RPSN rice planthopper search network

D2C decoupled two-stage crowd counting and

beyond
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1. Introduction

Aphids cause damage and lower agricultural yields in wheat,

rape and corn. They can build to high population density and

wither plants by absorbing their sap. Since the aphids are tiny

and clustered, the manual counting is very time-costing and

labour-consuming, which affects the investigation efficiency

of Integrated Pest Management (IPM) in the field. With the

development of computer vision, many scientists used

methods of digital image processing to identify and count

aphids. Since automatic aphid counting can reduce labour

intensity and improve work efficiency.

The premise of the automatic pest counting estimation is

accurate detecting. There are a lot of research papers related

to pest detection. Elison et al. (2020) presented a method of

automatic aphid counting and classification by using ma-

chine learning methods. The experimental results showed

that this method was reliable and useful to aphid population

monitoring studies. Although their methods achieved good

results, theirmonitoring equipment was fixed and could only

detect specific pests in a small region. Furthermore, these

methods were not suitable for Integrated Pest Management

(IPM) due to the limited regions. Thus, agricultural experts

could not get an accurate counting of pests from real farm

environments. To tackle this issue, Yao et al. (2014) devel-

oped a handheld device for easily capturing planthopper

images on rice stems and proposed an automatic method for

counting rice planthoppers based on image processing. They

achieved 85.2% detection rate and 9.6% false detection rate

for counting white-back planthoppers. Maharlooei et al.

(2017) used image processing techniques to detect and

count multi-sized soybean aphids on a soybean leaf. The
results showed that images captured with an inexpensive

regular digital camera could also provide satisfactory results

under high illumination conditions. Liu et al. (2016) devel-

oped a method of aphid identification and population

monitoring based on digital images. Their method achieved

the performance of 86.81% mean identification rate and

8.91% error rates. Although all the above methods achieved

satisfied performance, they mainly focused on hand-crafted

feature extractors and classifiers, which suffered from

several limitations. In the practical application, the

complexity of image background, illumination, scales and

arbitrary direction are the major challenges in feature ex-

tractors and classifiers.

With the domination of convolutional neural network (CNN)

and the evidence that feature learning approaches usually

perform better than traditional techniques in many computer

vision applications, object-detection has witnessed a quantum

leap in the performance on benchmark datasets (Lecun et al.,

2015). Lots of interest has been shown to the deep learning ar-

chitectures have emerged, such like Faster-RCNN (Ren et al.,

2015), you only look once (YOLO) (Redmon et al., 2016), Feature

Pyramid Network (FPN) (Lin et al., 2017), Cascade R-CNN (Cai

et al., 2018), and other extended variants of these architectures

(Cai et al., 2018， Tian et al., 2019). There are many detection-

based methods applied to pest counting. To monitor the num-

berofstored-grain insects, Shenetal. (2018)developedamethod

of detection and identification by applying deep neural net-

works. The results showed that the developed method could

detect and identify insects in the stored grain condition, and its

mean Average Precision (mAP) reached 88%. To estimate the

insect pest grade in nature fields, Ding and Taylor (2016) pro-

posed an automatic detection pipeline based on deep learning

for identifying and counting pests in images taken from field

traps. The results showed that their method had a promising

performance in both quality and quantity. To monitor more

kinds of pest, Liu et al. (2019) proposed a region-based end-to-

end approach named PestNet for pest localization and recogni-

tion based on deep learning and achieved 75.46% mAP. To

address the small pest recognition anddetection problem in the

light trap equipment, Wang, Jiao, et al. (2021) proposed a novel

sampling-balanced region proposal network and achieved

78.7% mAP. To improve the tiny pest detection accuracy from

sticky trap images, Li et al. (2021) developed a TPest-RCNN, and

the determination coefficients reached 99.6% and 97.4% for

whitefly and thrips recognition. All the above methods have

achieved satisfied performance, but they aimed to detect pests

under simple background rather than complex background in

field environment. Wang et al. (2020) proposed a novel two-

stages mobile vision based cascading pest detection approach

(DeepPest) towards large-scale multiple species of pest data.

Experimental results showed that DeepPest outperformed

state-of-the-art object detection methods in detecting field

pests. In order to improve the pest detection accuracy in the

field, Li et al. (2019) proposed an effective data augmentation

strategy and achieved the pest detection performance of 81.4%

mAP. For monitoring the tiny pest, Wang, Wang, et al. (2021),

proposed a rice planthopper search network (RPSN) and the

experimental resultsshowedthat their systemperformswell on

detecting rice planthoppers in non-specific wild environment

with recognition recall up to 91% in industrial circumstance. To

https://doi.org/10.1016/j.biosystemseng.2021.11.020
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detect the pests in greenhouse, Karar et al. (2021) developed a

new mobile application for agricultural pest detection and

recognition. The results showed that their application could

monitor five kinds of pests in greenhouse. Although this

approach alleviated the complexbackgroundchallenge to some

extent, itwas still inefficient indetectiondue to the ignorance of

the target density. Different from other common objects, the

estimationof aphid countingbyusingdetection-basedmethods

have many constraints: (1) Aphids are always densely distrib-

uted, making the detection very inefficient as shown Fig. 1. (2)

The aphids are easily confused with complex background,

because their colour very similar to the background. (3) Their

arbitrary direction and different scales also make the detection

difficult for the reason that the scale invariance and rotation

invariance of image features are too weak and insensitive

through CNN (Sabour et al., 2017).

To tackle these issues, many researchers have paid their

attention to using density maps for estimating objects

numbers like crowd counting, wildlife and cell counting. They

map the image to a densitymap instead of using hand-crafted

feature. The information (location and distribution) of objects

is recorded in the density map. The object counting can be

estimated via the density map. To estimate the crowd count

accurately, many studies have used CNN to generate density

maps to count the population (Chen et al., 2020; Li et al., 2018;

Zhang et al., 2016; Xiong et al., 2019). In order to create amodel

for counting any class of object, Lu et al. (2018) exploited a

class-agnostic counting model, this model could count cars,

cells, penguins and crowd. The experimental results showed

that their method surpassed the state-of-the-art methods

especially on cell and crowd counting datasets. Despite the

above methods had achieved good performance, these

methods could not be applied to aphid counting due to com-

plex background and severely dense distribution. In order to
Fig. 1 e (a) The results of aphids in sparse distribution using de

distribution using detection-based method. The limitation of de

clustered environment or in a very dense region significantly a

estimation accuracy.
solve these problems, in this paper, we developed the multi-

branch convolutional neural network (Mb-CNN) with density

map for aphid counting estimation, which could improve the

counting accuracy of aphids in densely distributed regions

and overlapped areas. The key idea of our method is to use a

multi-branch convolutional neural network framework to

generate the density maps of aphids for estimating their

number.
2. Materials and methods

2.1. Image collection and preprocessing

In this paper, we select 1100 images of aphids in dense re-

gions, which are collected under the wild environment. The

resolution of these images is 1440 � 1080 pixels taken by CCD

(Charge Coupled Device) camera with 4 mm focal length with

an aperture of f/3.3. Different from other common pests in

field, aphids are often densely distributed in a region. The

intuitive features of aphids in dense regions are easily

confused with complex background in field environments,

because aphids have a similar colour to the leaves or stems.

Thus, the density of aphids might affect the automatic

counting of aphids. According to the distribution density and

number of aphids, in this paper, we divide our dataset into

three densities: low density, normal density and high density.

In general, if there are 1e30 aphids in an image, this image is

classified as low density, 30 to 80 aphids are classified as

normal density, and more than 80 are classified as high den-

sity. We randomly split the dataset into training subset, vali-

dation subset and test subset at the ratio of 8:1:1. The aphid

dataset is illustrated in Fig. 2. The statistics of these three

subsets are illustrated in Table 1.
tection-based method. (b) The results of aphids in dense

tection-based methods is that occlusion among aphids in a

ffects the performance of the detector hence the final

https://doi.org/10.1016/j.biosystemseng.2021.11.020
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Fig. 2 e According to the density distribution and number of aphids, the dataset of aphids is divided into low density,

normal density and high density.

b i o s y s t em s e ng i n e e r i n g 2 1 3 ( 2 0 2 2 ) 1 4 8e1 6 1 151
After that, we label these imageswith annotations by using

Labelme. Labelme is a graphical image annotation tool, which

is written in Python and uses Qt for its graphical interface

(https://pypi.org/project/labelme/2.0.1/). When the number of

objects is large, dotting (pointing) is a usual way to count ob-

jects for humans. Thus, different from bounding-box anno-

tation methods, this paper, we apply a specific annotation

method that positions a single dot on each object in a given

image. The method not only gives the spatial distribution of

the aphids in the given image but also is less labour intensive

than the bounding-box annotation. The category name and

the location of aphids would be saved to a “json” file. Figure 3

shows some examples of the dotted annotation.

2.2. Method

The density-basedmethods contained CNN backbone, density

map generation and counting estimation as shown in Fig. 4.

The convolution featuremaps are extracted by CNN, and then

the densitymap is generated by utilizing the 1� 1 convolution

followed by ReLU. Finally, the number of objects would be

estimated by using the density map.

2.2.1. Density map generation
In the training step, the density maps of aphids generated by

training dataset would be used as the ground truth, which is

very import for counting aphids. Firstly, we first describe how

to generate a density map of an image with labelled aphids.

If there is an aphid at pixel xp in the image, the image with

M aphids annotated can be represented as:

FðxÞ¼
XM
p¼1

d
�
x� xp

�
(1)

dðx�xpÞ is a delta function and can be represented as:
d
�
x�xp

�¼ 0，xsxp (2)

ðb
a

d
�
x�xp

�
dx¼1; a<xp < b (3)

There is a serious problem in the density map generated

via FðxÞ, which will cause the generated density map to be

sparse. The sparse density map would result in the loss value

of CNN approaching to 0. It is not conducive to count the

number of aphids when the aphids are very dense. Therefore,

Gaussian kernel KsðxÞ is used to convolve with FðxÞ, the

convolved density map can be represented as following:

GðxÞ¼
XM
p¼1

d
�
x� xp

�
*KsðxÞ (4)

where KsðxÞ is the Gaussian kernel, M is the number of aphids

annotated. s is the spread parameter. The process of convo-

lution uses a two-dimensional Gaussian kernel to slide on the

density map as shown in Fig. 5.

To generate the density map, we should determine the

spread parameter s based on the size of the aphids in the

image. However, the size of the aphids is not obvious because

of overlapping. It is difficult to find the underlying relationship

between the aphid size and the density map. To address this

problem, Zhang et al. (2016) proposed an adaptive spread

parameter method based on its average distance to its

neighbours. They found that the size of object is highly related

to the distance of neighbours. If xp is an aphid in a given

image, its k nearest neighbours are denoted as fdp1;dp2;…;dpng,
n ¼ 4; so average distance is dp ¼ 1

n

Pn
j¼1d

p
j : Thus, the pixel

associated with xi corresponds to an area on the ground in the

scene roughly of a radius proportional to dp: The spread

parameter can be represented as s ¼ bdp with b ¼ 0:3. The

density maps generated by using GðxÞ are shown in Fig. 6.

https://pypi.org/project/labelme/2.0.1/
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Table 1 e Statistics on two subsets for our dataset with training subset, validation subset and test subset.

Density distribution Threshold Train subset Validation subset Test subset

#Images #Annotation #Images #Annotation #Images #Annotation

Low-density [0, 30] 561 3079 77 433 68 447

Normal-density [31e81] 200 9580 14 716 20 997

High-density [81,þ∞] 119 10,305 19 1573 22 1814

Total 880 22,964 110 2722 110 3258

Fig. 3 e The example of the dotted annotations.
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2.2.2. Multi-branch convolutional neural network
In our aphid dataset, aphids have different scales due to the

distance from camera and their ages. In order to estimate the

counting of aphids, inspired by Multi-Column Convolutional

Neural Network (MCNN) (Zhang et al., 2016) and FPN (Lin et al.,

2017), a novel multi-branch convolutional neural network (Mb-

CNN) isproposedinthispaper.MCNNisamethod forestimating

the crowd counting, which contains three columns correspond

to filters with different sizes for extracting feature maps of

different scale. However, the background of aphids is more

complex than crowd and aphids are tinier than human heads.

Thus, the methods of crowd count estimation might be not

suitable for aphid counting. FPN is a top-downarchitecturewith
Fig. 4 e The architecture of d

Fig. 5 e The process of density map gen
lateral connections is developed for building high-level seman-

tic featuremaps at different scales. As shown in Fig. 7, Mb-CNN

includes a backbonenetworkand threebranchnetworks. These

three branch networks come from different layers of the back-

bone network, and the convolution kernel sizes of these layers

are different, thus, Mb-CNN can be considered as a pyramid

structure. The reason for using pyramid structure is that the

three branches correspond to filters with receptive fields of

different sizes (big, medium and tiny).

Themulti-scale featuremaps fromdifferentbranchnetworks

in the backbone network are extracted to adapt to the variety of

different scales of aphids. Mb-CNN consists of six convolution

layers (Conv1eConv6), each of which has different sized convo-

lution kernels. In order to reduce the dimension of the feature

maps and improve the speed ofMb-CNN, the featuremaps from

Conv2 are forwarded via a convolution layer (Conv2_1) in

Branch_1. The depth of featuremaps is reduced from48 to 24 via

the convolution layer of Conv2_1. In order to maintain the

structure of pyramid, the size of the convolution kernel in the

Conv2_1 remains unchanged. Themax pooling (2 � 2) is used to

scale the featuremaps fromConv2_1 toasizesimilar to that from

Conv4_1 in Branch_2. Similarly, the feature maps from Conv4

andConv6 are forwarded throughConv4_1 andConv6_1. Similar

to Branch_1, an upsample operation is used in Branch_3 to keep

the size uniform with the feature maps from Conv4_1 in
ensity-based methods.

eration by using Gaussian Kernel.

https://doi.org/10.1016/j.biosystemseng.2021.11.020
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Fig. 6 e Original images and corresponding crowd density maps obtained by convolving geometry-adaptive Gaussian

Kernels.
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Branch_2. The feature maps from Branch_1, Branch_2 and

Branch_3areconcatenatedtogether togenerate thedensitymap.

In the training step, our Mb-CNN is trained by using

Euclidean distance to measure the difference between the

estimated density map and ground truth map. The loss

function could be defined as below:

loss¼ 1
2N

XN
i¼1

kFðXi;QÞ � GTik22 (5)

where loss is the loss between ground truth map and esti-

mated density map. N is the number of images in training set,

Xi is the input image,Q is the parameters inMb-CNN including
Fig. 7 e The structure of the proposed multi-branch c
learning rate, batch-size and epoch. FðXi;QÞ is the estimated

density map of Xi, GTi is the ground truth map of Xi.

Intheteststep,theaphiddensitymapwouldbegeneratedwhen

the aphid image was feed into Mb-CNN. The number of aphids in

the imagewas the sum of all the pixels of the densitymap:

Num¼ round

 X
x

FðxÞ
!

where FðxÞ is the density map and x is the value of pixel. The

final number of aphids is obtained via rounding FðxÞ, roundð ,Þ
is the is the rounding function.
onvolutional neural network for aphid counting.

https://doi.org/10.1016/j.biosystemseng.2021.11.020
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Table 2 e Performance comparison between the state-of-
the-art methods.

Based method Method MAE MSE

Detection-based methods FPN 46.92 48.74

FCOS 52.87 54.56

Cascade R-CNN 44.81 46.89

RPSN 45.50 47.55

Density-based methods MCNN 11.59 13.84

CRNet 15.17 17.23

D2C 10.82 12.63

Ours 10.22 12.24

b i o s y s t em s e n g i n e e r i n g 2 1 3 ( 2 0 2 2 ) 1 4 8e1 6 1154
3. Experiment

3.1. Experimental settings

In order to verify that Mb-CNN could be applied to aphid

counting, some experiments are built to evaluate the accuracy

and robustness of model. At present, most of pest automatic

counting is all based on the method of object detection.
Fig. 8 e The results of density-basedmethods. Themethods of d

obtain the number of aphids via density map regression. Thus,

performance in complex background and tiny object detection.
Therefore, three state-of-the-art detection-basedmethods are

experimented in this paper. The methods based on object

detection are FPN, fully convolutional one-stage object

detection (FCOS) (Tian et al., 2019), Cascade ReCNN and RPSN

(Wang, Wang, et al., 2021, Wang, Jiao, et al., 2021). FPN is a

pyramidal hierarchy of deep convolutional networks and be-

longs to two-stage detector. FCOS is a full-convolutional one-

stage object detection method, which has high computing

efficiency. Cascade-RCNN extended Faster R-CNN to a multi-

stage detector through the classic yet powerful cascade ar-

chitecture, and has good performance on object detection.

RPSN belonged to the detection-based methods. RPSN was

used for counting planthoppers or other tiny pests via

extracting multiple high-quality proposal regions from large-

scale pest images with tiny objects (Azulay & Weiss, 2019).

All above methods use ResNet-101 (He et al., 2016), as

backbone for feature extraction. The deep learning framework

of “mmdetection” (https://github.com/open-mmlab/

mmdetection) with Python API 3.7 is applied in this paper.

The learning rate is initialised to 0.001 and themin-batch is set

to 2.
ensity map do not need locate the position of aphids, which

compared with detection-based methods, they have better

https://github.com/open-mmlab/mmdetection
https://github.com/open-mmlab/mmdetection
https://doi.org/10.1016/j.biosystemseng.2021.11.020
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Fig. 9 e The results of detection-based methods. Aphids always gather in a clique; the high density and tiny size of aphids

could raise the difficulty to detect them by confusing their features with those of the adjacent aphids. Thus, the detection-

based methods have high rate of missed detections.
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Besides, three methods based on the density map are

also experimented to verify the performance of our method.

These methods are MCNN, CRNet and D2C. MCNN is a

multi-column convolutional neural network architecture to

extract multi-scale features and obtain its density map

(Zhang et al., 2016). CRNet could refine predicted density

maps progressively based on hierarchical multi-level den-

sity priors (Liu et al., 2020). D2C (Cheng et al., 2021) had a

good performance in crowd counting, and a probabilistic

intermediate representation termed the probability map

was introduced in this method. D2C decouple counting into

probability map regression and count map regression. All

above methods adopt multi-scale architecture to generate

density map. The deep learning framework of “pytorch”

(https://pytorch.org/) with Python API 3.7 is applied in this

paper and run on 12GB GTX 1080Ti GPU. In the training

process, the learning rate is set to 0.0001, the number of
iterations is 2000. In this paper, the training set, validation

set and test set are randomly allocated according to 8:1:1,

and the final model would be selected according to the

performance of the validation set.

3.2. Evaluation metrics

Compared with other detection-based methods, we use Mean

Absolute Error (MAE) and Mean Square Error instead of using

Average Precision (AP) to evaluate the metric, because the AP

is updated for combining tasks of both classification and

localization (bounding box). While the point annotation

method is used in this paper, which does not contain the in-

formation of bounding box, MAE and MSE are more suitable

for themodel of aphid counting estimation.MAE evaluates the

accuracy of the model, and MSE evaluates the robustness of

the model, which are defined as:

https://pytorch.org/
https://doi.org/10.1016/j.biosystemseng.2021.11.020
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Fig. 10 e The results of low density. The methods of detection-based have lower MAE and MSE than density-based methods

when aphids are in low density distribution. Thus, the detection-based methods could be used for counting the number of

aphids when aphids are not densely distributed.

b i o s y s t em s e n g i n e e r i n g 2 1 3 ( 2 0 2 2 ) 1 4 8e1 6 1156
MAE¼ 1
N

XN
i¼1

jzi � bzij (6)

MSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

ðzi � bziÞ2
vuut (7)
Fig. 11 e The results of low density. There have lower missing a

the case of low density distribution.
where N is the number images of test set, zi is the number of

labelled aphids in the ith image, and bzi is the number of esti-

mated aphids in the ith image.

3.3. Experimental results

Table 2 presents the results of detection-based methods and

density-based methods. The best result is marked with the
nd false detection rate by using detection-based method in

https://doi.org/10.1016/j.biosystemseng.2021.11.020
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Fig. 12 e The results of normal density. Different from low density, the methods of detection-based have much higher MAE

and MSE than density-based methods when aphids are in normal-density distribution. The density-based methods have

better performance in the case of normal-density distribution.
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bold font. Table 1 shows that compared with detection-based

methods, density-based methods have better performance.

The results of density-based methods are shown as Fig. 8, and

the results of detection-based methods are shown as Fig. 9.

The results show that the density-based methods are better

than detection-based methods. Because when tiny aphids

gather in a clique, the high density of aphids could raise the

difficulty to detect themby confusing their featureswith those

of the adjacent aphids (Li et al., 2019). This may lead to an
Fig. 13 e The results of normal density. There are higher missing

when aphids are in normal density distribution.
excessively high rate of missed detections as shown Fig. 1(b).

Different from detection-based methods, the methods based

on the density map estimate the number of aphids by

obtaining the density map of the image without the require-

ment of the aphid location information. Thus, the density-

based methods have higher accuracy.

Table 2 shows that Cascade R-CNN has the best perfor-

mance among the detection-based methods, the reason is

that Cascade R-CNN adopted a cascade framework, which
and false detection rates by using detection-basedmethod
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Fig. 14 e The results of high density. When aphids are in high-density distribution, the methods of detection-based have

much higher MAE and MSE than density-based methods. As the density of aphids increases, the performance of detection-

based methods are getting worse.
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could improve the accuracy and robustness of aphid detec-

tion. RPSN was specially used to detect tiny pests, it could

automatically extract multiple high-quality proposal regions

from pest images with tiny objects. Furthermore, sensitive

score matrix was used to further enhance the performance of

classification and bounding box regression. Thus, RPSN has

better results than FCOS and FPN.

The experimental results show that among the state-of-

the-art density-based methods, Mb-CNN has the best
Fig. 15 e The results of high density. There are many aphids ca

aphids are in high density distribution. Thus, the density-based

are in high density distribution.
performances. The pooling layers may lead to information

loss, which might weaken the features of objects in feature

maps especially when the object is very tiny. Compared with

other density-basedmethods, Mb-CNN reduces the number of

pooling layers. Furthermore, Mb-CNN is a pyramid structure,

which could integrate the low-level object features and high-

level semantic features. Among the density-based methods,

MCNN, CRNet and D2C are all developed for estimating the

number of crowds. The scale of human head in the crowds is
nnot be detected by using detection-based method when

methods are more suitable for aphid counting when aphids

https://doi.org/10.1016/j.biosystemseng.2021.11.020
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much larger than that of aphids, and these methods may be

not suitable for the estimation of aphids. Thus, among the

density-based methods, Mb-CNN has the best results. Table 2

shows that D2C has better results than MCNN and CRNet,

because D2C applied probability map regression and count

map regression to generate density map, the density map is

closer to the number of aphids. MCNN has less number of

pooling layers, thus, MCNN has better results than CRNet.

3.4. Experimental analysis

3.4.1. The analysis of dense distribution
Aphids are always densely distributed, different dense distri-

bution may affect the performance of aphid counting. Thus,

three kinds of dense distribution (low density, normal density

and high density) are experimented in this paper. The results of

detection-based methods and density-based methods in

different density distributions as shown Figs. 10e15. The visu-

alization of detection-based method (Cascade R-CNN) and

density-based method (Mb-CNN) are shown as Figs. 11, 13 and

15. The results of detection-based methods are better than

those density-basedmethodswhen aphids are in a low-density

distribution as shown Figs. 10 and 11. However, with the in-

crease in the density of aphids, the counting accuracy of

density-basedmethods are much better than that of detection-

based methods as shown Figs. 12e15. Thus, the experimental

results show that the distribution of aphids could affect the

accuracy of counting. Specifically:

1) The density-based method have better performance

than detection-based method when aphids are in

normal density and high density distribution.

2) The detection-based methods have better performance

than density-based methods when aphids are sparsely

distributed.
Fig. 16 e The difference between Mb-C
3.4.2. The difference between density map and semantic
segmentation
Because the output results of Mb-CNN is very similar to se-

mantic segmentation network, thus, it is necessary to discuss

the differences between the two methods. Specifically, there

are the following differences:

(1) The method of image annotation is different. Our

proposed method uses point for image annotation,

while semantic segmentation need the pixel-level

annotations as shown Fig. 16(b).

(2) The network of the two methods are different. The

Mb-CNN is used for extracting the texture features of

aphids and the final output is a density map of

aphids. Semantic segmentation network is used for

extracting the pixel-level features and the final

output is a segmented image as shown Fig. 16(a).

(3) The ground truth of the two methods are different.

The ground truth of Mb-CNN are density maps of

aphid. The ground truth of semantic segmentation

network is a pixel-wise segmentation annotation

file which gives the class of the object at each

pixel.

(4) The two methods have different application fields.

Mb-CNN is mainly used for counting the number of

dense objects, thus, our proposedmethod has higher

accuracy in the dense aphids counting. The semantic

segmentation is mainly used for scene recognition

and understanding not for object counting.

Overall, the semantic segmentation network is rarely used

for object counting, because when aphids are densely

distributed, it is easy to count the adhesive aphids as an aphid

using semantic segmentation method as shown Fig. 17. Thus,

it is not satisfactory due to the tiny size and the dense
NN and semantic segmentation.
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Fig. 17 e It is easy to count the adhesive aphids as an aphid

using semantic segmentation.
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distribution. Because the down-sampling layers in semantic

segmentation network aremuchmore thanMb-CNN, and tiny

sizes might weaken the features of aphids in feature maps.
4. Conclusion

In order to solve the problem of aphid counting due to serious

dense distribution, density map is firstly applied for aphid

counting. A multi-branch convolutional neural network with

density map for aphid counting is proposed, which is feasible

to apply to practical aphid prevention. Experimental results

demonstrate that Mb-CNN achieves 10.22 MAE and 12.24 MSE

on aphid counting task, which has better performance than

the other state-of-the-art approaches. Furthermore, we pub-

lish a domain specific dataset for aphid detection and count-

ing in the filed containing more than 1100 images and 28,944

annotated labels in this paper. Specifically, this dataset has a

high application value on aphid counting. In the future, we

will target at improving the generalization of our Mb-CNN and

transferring it into generic dense object counting task.
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