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Abstract
Articulations are essential in everyday interactions,
yet traditional RGB-based pose estimation methods
often struggle with issues such as lighting varia-
tions and shadows. To overcome these challenges,
we propose a novel Pre-defined keypoint based
framework for category-level articulation pose
estimation via multi-modal AliGnmEnt, coined
PAGE. Specifically, we first propose a customized
keypoint estimation method, aiming to avoid the di-
vergent distance pattern between heuristically gen-
erated keypoints and visible points. In addition,
to reduce the mutual information redundancy be-
tween point clouds and RGB images, we design the
geometry-color alignment, which fuses the features
after aligning two modalities. This is followed by
decoding the radius for each visible point, and ap-
plying our proposal integration scoring strategy to
predict keypoints. Ultimately, the framework out-
puts the per-part 6D pose of the articulation. We
conduct extensive experiments to evaluate PAGE
across a variety of datasets, from synthetic to real-
world scenarios, demonstrating its robustness and
superior performance.

1 Introduction
Articulated objects are common in daily life, encompass-
ing household items like scissors and cabinets, as well as
office tools such as laptops. These objects are composed
of multiple rigid components linked by joints, setting them
apart from standard rigid objects through their kinematic con-
straints. This unique structure complicates articulation pose
estimation, making it more challenging than for rigid ob-
jects. Accurate and efficient pose estimation of articulated
objects remains a crucial hurdle in various downstream ap-
plications, particularly in robot manipulation [Xiong et al.,
2023], human-object interactions [Liu et al., 2021], embod-
ied AI [Yu et al., 2023; Guo et al., 2024], and augmented
reality [Amin and Govilkar, 2015].

Traditionally, the 6D object pose estimation problem has
been addressed by matching points between 3D models and
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Figure 1: Motivation. 1) Traditional methods generate GT key-
points through heuristic approaches and then regress and align the
keypoint locations in different spaces. 2) In this paper, we found that
the pre-defined keypoint method outperforms heuristic algorithms.
The core idea is that pre-defined keypoints make the radius differ-
ences, which are originally uneven across different sets of keypoint,
more uniform, thereby reducing prediction bias.

images. In recent years, the advent of low-cost RGB-D sen-
sors has made it possible to infer poses for low-texture ob-
jects. In low-light environments, RGB-D methods [Wang
et al., 2019] have demonstrated higher accuracy compared
to pure RGB methods. Furthermore, as an alternative to di-
rectly regressing keypoint coordinates, keypoint-based meth-
ods have proven to be highly effective for pose estima-
tion [Li et al., 2021], and can be seamlessly applied to multi-
modal input for 6D object pose estimation. Despite progress,
category-level articulated pose estimation remains a challeng-
ing and critical task, as existing methods still encounter sev-
eral unresolved issues:

(i) Multi-Modal Fusion. 3D object models provide geo-
metric information, while RGB images offer texture and color
details. Traditional fusion methods (e.g., [Wang et al., 2019])



integrate features from these modalities but often fail to ad-
dress their distinct data distributions and feature representa-
tions. This oversight can result in information redundancy or
mismatches, leading to learning difficulties or convergence
failures. Although subsequent works, such as [Shivakumar
et al., 2019], attempt to address this issue using depth maps
generated from projections, these maps lack the rich color and
texture information of RGB images, as they only represent 2D
plane projections. Similarly, RGB images lack depth infor-
mation, capturing only 2D color distributions. Multi-modal
fusion thus remains a significant challenge, further compli-
cated by factors like viewpoint changes, background noise,
and varying lighting conditions.

(ii) Keypoint Estimation Manner. Keypoint-based meth-
ods are widely used in domains like human and animal pose
estimation. Recent advances include heatmap-based [Sun et
al., 2020] and sequence-based [Lin et al., 2022] techniques,
which, despite differing mechanisms, belong to the regression
paradigm. However, these methods face similar challenges:
1) The distribution of distances between visible points and
keypoints is overly scattered, resulting in nearby points hav-
ing a stronger sensitivity to positional features, making them
easier to regress. 2) Dependency on global features: Reliance
on global features makes them vulnerable to noise and occlu-
sion, leading to inaccurate keypoint predictions.

To address the first issue, we propose a geometry-guided,
image-enhanced fusion module. Point clouds and images
complement each other in representing an object’s geometry
and texture: point clouds capture geometric shape and spa-
tial layout, while images provide detailed texture and appear-
ance information. Building on this concept, we project the
point cloud into a depth map, using its coordinates to identify
regions of interest in the image features. Interpolation and
selection are then applied to extract pose-sensitive features,
aligning point cloud and RGB image features in the semantic
space. A customized fusion module subsequently filters re-
dundant information and noise, ensuring consistency between
point cloud and image features within the feature space dur-
ing the fusion process.

To address the second issue, our method centers on trans-
forming the problem into a proposal integration and scoring
process (See Fig. 1). Specifically, we designed a scheme in
which the network regresses the radius for each visible point,
representing the Euclidean distance between the visible point
and the keypoint. Each point’s radius is then mapped into a
3D accumulator space to form independent proposals for each
grid. Since these proposals are accumulated independently,
this approach demonstrates exceptional robustness even in
complex scenes with occlusions. Furthermore, we observed
that using pre-defined keypoints rather than heuristically gen-
erated keypoints can improve model performance effectively.
The primary advantage of pre-defined keypoints lies in their
more uniform radius distribution relative to each visible point,
as opposed to uneven or sparse distributions.

In summary, to address the category-level articulated ob-
ject pose estimation problem under multi-modal represen-
tation, we propose a Pre-defined Keypoint multi-modal
AliGnmEnt framework, named PAGE. The core of our
method lies in a novel geometric-color alignment process,

pre-defined keypoint estimation mechanism, and proposal in-
tegration scoring strategy. In practice, to validate the effec-
tiveness of our method, we conduct extensive experiments
on multiple datasets, including synthetic, semi-synthetic, and
real-world datasets. We believe these experimental results
demonstrate the superior performance and robustness of our
PAGE. Our main contributions can be concluded as threefold:

• We propose the PAGE, a novel Pre-defined Keypoint
multi-modal AliGnmEnt framework for category-level
articulation pose estimation.

• In PAGE, Color features are leveraged to comple-
ment geometric information, forming the enhanced
geometric-color alignment. To avoid the weakness of
traditional heuristics and regressing methods, we pro-
pose the customized Keypoint estimator and proposal
integration scoring scheme.

• The experimental results from synthetic (ArtImage),
semi-synthetic (ReArtMix), and real-world datasets
(RobotArm) all demonstrate the effectiveness and ro-
bustness of the proposed PAGE.

2 Related Work
2.1 Pose Estimation from Different Modalities
Pose estimation methods can be categorized by input data
type: 1) RGB-Based: These methods estimate 6D poses from
color or monochrome images, typically via 2D detection or
keypoint localization [Baek et al., 2019]. 2) Depth-Based:
Depth images are converted into partial point clouds using
camera parameters. Approaches include reinforcement learn-
ing [Liu et al., 2023] and regression models [Li et al., 2020].
3) RGB-D-Based: These methods fuse depth and RGB im-
ages through various levels and paradigms. For example,
DenseFusion [Wang et al., 2019] employs dense pixel-wise
feature embedding.

In summary, RGB-only methods are sensitive to lighting,
causing performance drops in low illumination, while depth-
only methods struggle to differentiate objects with similar
shapes but different colors, leading to ambiguities. To over-
come these issues, we adopt an RGB-D manner. Instead of
traditional ways, we emphasize feature alignment to reduce
redundancy and improve downstream task performance.

2.2 Keypoint Based Pose Estimation
Keypoint-based methods are widely applied in various fields,
such as human [McNally et al., 2022], animal [Gong et al.,
2022], and object estimation [Xue et al., 2021]. The gen-
eral workflow of these methods typically begins with a key-
point regression network, where the core task is to estimate
the keypoint locations of an object in different spaces. The
object’s pose is then inferred based on the correspondences
of these keypoints. The key advantage of these methods lies
in their heuristic algorithm (e.g., FPS, BBox) design, aiming
to generate geometrically dispersed keypoints. To enhance
robustness, this process often integrates classical algorithms,
such as RANSAC [Besl and McKay, 1992; Horn et al., 1988;
Fischler and Bolles, 1981]. Keypoint-based approaches have
been proven to be one of the most accurate solutions for 6D



pose estimation, and recent research has further advanced the
development of these methods. Generally speaking, it can
be divided into the following paradigms: 1) Detection. i.e.,
detect the position of key points through images or sensor
data (such as [Qiao et al., 2017], [Nguyen et al., 2022]). 2)
Matching. i.e., match key points between different images or
frames for tracking or alignment (e.g., [DeTone et al., 2018],
[Rockwell et al., 2024]). 3) Generation. i.e., Generate the
location or heatmap of key points ( [Zhu and Ye, 2024]).

Although previous methods vary in their implementation,
most can be regarded as regression methods. These meth-
ods rely on clear and well-defined input-output mappings and
are heavily dependent on high-quality data and robust global
features. Furthermore, this paradigm is highly sensitive to
outliers, which can lead to biased network convergence and a
lack of robustness in noisy and occluded scenarios.

3 Problem Statement
In this paper, our goal is to address the Category-level
Articulation Pose Estimation task based on RGB-D modal-
ities (CAPE task). The core idea is to predict the pre-defined
keypoints through a scoring mechanism to determine the ar-
ticulated pose. To this end, we define a new paradigm for the
CAPE task, named PAGE. Specifically speaking, given the
partial point cloud P of an articulated object A = {δk}Kk=1
(where {δk} represents the k-th rigid part) and its correspond-
ing 2D observed image I as the input, the output objec-
tives of our PAGE are as follows: (i) per-part 3D rotation
R(k) ∈ SO(3); (ii) per-part 3D translation t(k). Together, the
rotation and translation parameters form the 6D pose estima-
tion result, denoted as T = {R(k), t(k)}Kk=1 ∈ SE(3).

The proposed PAGE framework operates as follows: point
clouds within the intra-category are processed by a backbone
optimized using geometry-sensitive loss functions to gener-
ate pre-defined keypoints GT. Then the partial point cloud
P ∈ RN×3 = {pi}Ni=1 is projected into a depth image using
the camera mapping parameter M , establishing a 1-to-1 map-
ping with the 2D image I . This filters redundant information,
yielding point-wise color features FC , which are processed
by the GC-Fuser to produce re-modulated features FCG.
These features are used to either decode the articulation seg-
mentation mask (optional) or directly predict the radius ri for
each visible point pi. Per-part keypoints K(k) = {κi}3i=1 are
predicted as follows: if the error between the predicted radius
and the corresponding grid’s distance is within a threshold η,
the corresponding proposal count is incremented by 1. Then
each grid’s score Si is computed, and the highest-scoring
grid’s center is selected as the keypoint. Finally, the ICP al-
gorithm outputs the estimated 6D pose {R(k), t(k)}Kk=1.

4 Methodology

4.1 Pre-defined Keypoint Estimation
As highlighted in Sec. 2, the core of traditional keypoint-
based methods lies in their heuristic algorithms, which aim to
generate geometrically scattered keypoints, typically placed

near the object’s surface. These keypoints exhibit a nonlin-
ear distribution, meaning they aren’t arranged along a sin-
gle line but are scattered in multiple directions, aiding in the
subsequent pose transformation recovery through correspon-
dences between keypoints and image points. However, we
observe that the distance distribution between heuristic key-
points and visible points follows a distinct divergent pattern,
a phenomenon that has not been adequately addressed in pre-
vious studies. Therefore, this work shifts its focus to the gen-
eration of pre-defined keypoints. We find that by training
a Graph Network, a set of geometrically sensitive scattered
keypoints can be selected, which significantly enhances the
accuracy and efficiency of object pose estimation. Compared
to previous heuristic keypoint algorithms, this method pro-
vides a more precise prediction of articulated object poses.

As shown in Fig. 2, our goal is to train the network such
that the radius (i.e., the Euclidean distance between visible
points and keypoints) distribution of each keypoint set is as
similar as possible. To achieve this, we draw inspiration from
the design of [Qiu et al., 2020] and employ GraphNet. Note
that the input module consists of the complete point clouds of
the same category, while the output is a keypoint distribution
that is spatially almost consistent. This approach leads to a
pre-defined keypoint generator that is specific to the current
category. High-quality 3D keypoints should possess geomet-
ric sensitivity in order to more accurately capture the pose
of articulated objects. Therefore, during the GT keypoint es-
timation process, we consider the following key factors: 1)
Minimum Distribution Difference: Heuristically generated
keypoints often exhibit a large variance in the distance dis-
tribution to visible points. This causes the model to develop
a preference for utilizing point cloud regions near the key-
points (where features are denser) and avoiding regions far-
ther away (where features are sparser), leading to local opti-
mality or significant prediction errors. 2) Divergent Layout:
Keypoints should avoid clustering in close or identical loca-
tions. Instead, they should be distributed as evenly as possible
to more comprehensively represent the geometric features of
the object. 3) Geometric Inclusiveness: The distribution of
keypoints should not be too far removed from the object, as
this would lead to a lack of shape meaning and may degrade
the object representation to mere points.

Thus, we propose the KP-Estimator, which conducts cus-
tomized design and constraints as follows: 1) We aim for
the generated keypoints to have similar radius clusters (i.e.,
the Euclidean distance clusters between each keypoint and
each visible point), meaning that the radius distribution for
each pair of keypoints should be as close as possible. To
achieve this, we introduce the Wasserstein loss Lwass [Wu
et al., 2024], which goes beyond WassGAN-GP [Gulrajani et
al., 2017] and in the same spirit inspired by involving both a
critic loss and gradient penalty. The Wasserstein loss Lwass

between two keypoint radius sets Ri and Rj is defined as:

Lwass =
1

K

K∑
k=1

{K(k)∑
κi

K(k)∑
κj

[
D(Ri)−D(Rj)

+λ (||∇RD(R)|| − 1)2
]} (1)



Figure 2: The Pipeline of the Proposed PAGE. It consists of the following components: (a) Pre-defined Keypoint Estimation. We use the
geometric-sensitive loss to get the pre-defined keypoint GT. (Sec. 4.1) (b) Geometric-Color Alignment. This module takes partial PC and
RGB image as input, and outputs the fused feature after aligning. (Sec. 4.2) (c) Proposal Integration Scoring. The predicted radii will be
used for generating proposals and scoring for keypoints. (Sec. 4.3).

Where D(Ri) and D(Rj) represent the histogram distribu-
tions of radius, Ri and Rj represent the radius group of the
respective keypoints κi and κj . D(R) denotes the joint dis-
tribution of Ri and Rj , while ∇R is the gradient calculated
from R, and λ is the gradient penalty hyperparameter. Un-
like WassGAN-GP [Gulrajani et al., 2017], which applies the
gradient penalty only when the generator learns to imitate the
GT, we apply the gradient penalty to all sets of radius val-
ues. This helps to enhance the smoothness and stability of
the predictions, thereby optimizing overall performance.

2) To prevent keypoints collapse, we introduce the per-part
separation loss, Lsep, which ensures that multiple keypoints
do not converge at the same location.

Lsep =
1

K

K∑
k=1

{K(k)∑
κi

K(k)∑
κj

exp(ζ2 − ∥κi − κj∥2)
}

(2)

where ζ is the threshold. Note that ζ is slightly larger than
the distance between keypoints sampled by FPS, because our
key points are not distributed on the surface of the object, but
have a certain distance.

3) Finally, to ensure comprehensive coverage of the rigid
part’s shape geometry by the learned keypoints, we introduce
the per-part coverage loss, Lcov . This loss is based on the dif-
ference between the volume V(·) of the keypoints, P (k), and
the input point cloud, X(k), while also penalizing keypoints
that are distant from X(k):

Lcov =
1

K

K∑
k=1

(∥V(P (k))−V(X(k))∥2+
K∑
κi

∥κi−X(k)∥2) (3)

The total loss, Lttl, for KP-Estimator, which estimates self-
supervised per-part 3D keypoints, is defined as the weighted
sum of the Wasserstein loss Lwass, separation loss Lsep, and
coverage loss Lcov , with corresponding weights λ1 = 0.6,
λ2 = 0.2, and λ3 = 0.2, as follows:

Lttl = λ1Lwass + λ2Lsep + λ3Lcov (4)

Through this approach, KP-Estimator is trained to iden-
tify a set of dispersed keypoints with uniformly distributed
radii. This results in a unified set of keypoints applicable to
all objects in the dataset, which can subsequently be utilized
in keypoint-based 6D pose estimation methods. Experimen-
tal results show that the keypoints selected by KP-Estimator
improve the accuracy of most evaluation metrics (details can
be found in the ablation study).

4.2 Geometric-Color Alignment
Feature alignment and fusion is not a trivial task, as many ex-
isting methods directly perform fusion while neglecting the
importance of proper alignment. To address this, we propose
a novel multi-modal alignment and fusion method, called
GCA (Geometric-Color Alignment). Specifically, the pro-
posed GCA consists of three steps: (1) Depth-RGB Image
Registration, (2) Redundancy Minimization (i.e., feature se-
lection), and (3) Geometry-Color Fusion (GC-Fuser).

(1) Depth-RGB Image Registration. Firstly, the partial
PC will be projected into a 2D depth image with the help
of the camera mapping matrix (denoted as M ). Afterward,
we conduct the registration by bilinear interpolation, and then
the 1-1 correspondence between depth and RGB images can
be easily established at different resolutions. Mathematically,
for a specific point p in the point cloud, we can calculate its



Figure 3: Illustration of the GC-Fuser. The geometry features are
applied to guide the fusion procedure with point-wise color features.

corresponding position p′(u, v) in the depth image. This pro-
cess can be expressed by the projection equation p′ = M×p.

(2) Redundancy Minimization. With the 1-1 registration
between Depth and RGB images, our target is to extract RGB
features strongly correlated with each visible point. Formally,
taking the sampled position p′ and the image feature map FI

as inputs, generating point-wise color feature representations
FC for each sampled position. Thus, we filter out the re-
dundant mutual information. In practice, since the sampling
position may lie between adjacent pixels, we employ interpo-
lation to obtain the color features at continuous coordinates.

(3) Geometry-guided Color Fuser. To address the
aforementioned fusion issue, we propose the GC-Fuser
(Geometry-guided Color Fuser) that adaptively estimates the
importance of color features on a per-point basis, guided by
geometry features. The specific process is outlined in Fig. 3:
first, geometry features FG and per-point color features FC

are projected into modality-aware feature spaces indepen-
dently. Then, we further conduct mutual information mini-
mization between them to explicitly promote the learning of
complementary information. Next, these two branches are
fused into a compact feature representation, which is then
compressed through another fully connected layer, ultimately
generating an adaptive weight map w. We normalize this
weight map to the range [0,1] using the softmax function.
This procedure can be formulated as:

w = S(W ·H(Add(UFP ,VFI))) (5)
where W , U , V denote the learnable weight matrices in our
GC-Fuser. S() represents Softmax and H() represents the
output activation.

After obtaining the adaptive weight map w, we combine
the geometry features FG ∈ RN×C1 and semantic-related
color features wFC ∈ RN×C2 in a concatenation manner.
The specific process can be expressed as:

FCG =
C

||
i=1

(wFC ,FG) (6)

where || represents concatenation, C = C1 + C2.

4.3 Proposal Integration Scoring
The distance voting method [Wu et al., 2022] has been proven
to be an effective position inference algorithm. By adhering
to the inclusion similarity between the geometric structure of

visible points and the complete point cloud structure, it lever-
ages local structures to infer global pose information. Build-
ing on this, we further propose a novel 3D proposal integra-
tion scoring method. The core idea is: in the 3D accumulator
space, the number of valid proposals from visible points is
counted for each grid, and the confidence score is calculated
by aggregating these proposals.

For each rigid part, we output a set of keypoint propos-
als along with their corresponding aggregation scores inde-
pendently. To more intuitively illustrate the proposal integra-
tion scoring mechanism, we draw an analogy between each
visible point in the point cloud and a Member of Parliament
(MP), whose primary task is to raise proposals for each grid in
the 3D accumulator space. In this procedure, considering the
partial point cloud P ∈ RN×3 (input), we utilize the fused
features FCG to output 3N channels, which represents the
predicted distances (radii) from each visible point to the three
pre-defined keypoints. Furthermore, we define the resolution
of the 3D accumulator space as ρ, which corresponds to the
edge length of the smallest unit grid voxel. If the absolute
error between the computed radial distance and the estimated
keypoint radius is less than or equal to ρ, the proposal is con-
sidered valid, and the proposal count for the corresponding
grid is incremented by 1; otherwise, the proposal is deemed
invalid, with the count remaining at 0. We adopted the confi-
dence function from [Tekin et al., 2018] and applied it to our
proposal function, as expressed mathematically below:

Pi = 1{(1− |di − r̂i|
σ

) ≥ 0} (7)

Where 1(·) is the indicator function.
Subsequently, the proposal count for each grid is aggre-

gated to compute the confidence score. Here, the confidence
score is defined as the ratio of the current grid’s proposal
count to the total proposal count. The grid with the high-
est score is selected as the final result (Eq. 8), and its center
point is considered as the elected keypoint K̂ (Eq. 9).

Si =
Pi

Ptotal
× 100% (8)

K̂ = argmaxi{Si} (9)
Overall, when the network is sufficiently trained, the ma-

jority of the proposals generated by local feature points are
able to accurately localize the target keypoint, and the final
center point estimation converges to the ground truth. Even in
the presence of a small amount of noisy votes, no significant
deviation occurs, which demonstrates the robustness of our
method. From another perspective, our aggregation step ef-
fectively estimates the probability density of the center point
position in the spatial domain (i.e., the keypoint) and deter-
mines its location accordingly. Notably, this process is invari-
ant to rigid transformations (i.e., SE(3) invariance), ensuring
stability even when the object pose changes, and maintaining
a prominent peak in the distribution.

5 Experiments
Datasets, Baselines, and Metrics. We evaluate our PAGE
framework on the ArtImage [Xue et al., 2021], ReArt-



Category Method Per-part Pose
rotation error (◦) ↓ translation error (m) ↓ 3D IoU (%) ↑

Laptop

A-NCSH [Li et al., 2020] 5.3, 5.4 0.054, 0.043 56.7,40.2
Densefusion [Wang et al., 2019] 5.4, 4.3 0.062, 0.061 43.5,24.1

ASMM [Zhang et al., 2025] 4.9, 4.4 0.048, 0.042 58.1,43.5
PAGE (Ours) 4.0, 1.7 0.014, 0.019 64.6,50.4

Eyeglasses

A-NCSH [Li et al., 2020] 3.5, 18.3, 18.2 0.043, 0.286, 0.283 52.5,40.2,39.6
Densefusion [Wang et al., 2019] 4.9, 7.5, 7.5 0.062, 0.103, 0.104 46.8,41.5,38.4

ASMM [Zhang et al., 2025] 3.5, 6.1, 6.4 0.041, 0.235, 0.236 51.2,43.1,41.5
PAGE (Ours) 3.2, 5.2, 5.1 0.027, 0.075, 0.071 58.6,46.5,51.7

Dishwasher

A-NCSH [Li et al., 2020] 4.0, 4.8 0.059, 0.123 84.3,56.2
Densefusion [Wang et al., 2019] 6.0, 6.2 0.104, 0.142 66.5,38.9

ASMM [Zhang et al., 2025] 12.5, 4.6 0.146, 0.184 43.8,28.6
PAGE (Ours) 3.9,4.3 0.055,0.079 89.3,67.6

Scissors

A-NCSH [Li et al., 2020] 2.0, 2.6 0.035, 0.021 45.8,44.8
Densefusion [Wang et al., 2019] 3.9, 3.4 0.048, 0.039 35.6,34.5

ASMM [Zhang et al., 2025] 3.6, 4.7 0.047, 0.060 38.4,29.0
PAGE (Ours) 1.9, 5.4 0.013, 0.032 47.9, 48.6

Drawer

A-NCSH [Li et al., 2020] 2.8, 3.3, 3.5, 2.7 0.041, 0.145, 0.137, 0.072 90.5,82.1,79.4,83.7
Densefusion [Wang et al., 2019] 4.4, 4.4, 4.4, 4.4 0.111, 0.143, 0.144, 0.115 75.8,73.4,70.2,71.3

ASMM [Zhang et al., 2025] 3.2, 3.6, 3.5, 3.8 0.124, 0.178, 0.175, 0.121 80.3,74.2,75.7,74.4
PAGE (Ours) 2.8, 2.8, 2.8, 2.8 0.010, 0.017, 0.015, 0.013 91.8,87.6,85.0,86.2

Table 1: Comparison with State-of-the-arts on ArtImage Dataset. The categories laptop, eyeglasses, dishwasher and scissors contain only
free joint and revolute joints, and the drawer category contains free joint and prismatic joints.

Figure 4: Qualitative Results on ArtImage and ReArtMix. The left is a synthetic dataset and the right is the semi-synthetic scenario.

Mix [Liu et al., 2022], and RobotArm [Liu et al., 2022]
datasets, covering synthetic, semi-synthetic and real-world
scenarios. For performance comparison, we benchmark
against four RGB+Depth-based methods: A-NCSH [Li et al.,
2020], Densefusion [Wang et al., 2019], ASMM [Zhang et
al., 2025]. The evaluation metrics include degree error for
3D rotation, distance error for 3D translation, and 3D Inter-
section over Union (IoU) for measuring 3D scale.

Implementation Details. During the pre-processing, the in-
put RGB images are scaled into 224×224 resolution and the
point clouds are downsampled into 2,048 points before be-
ing fed into the network. Please note that the input modal-
ity of all methods have been adjusted to depth + color, and
re-training was conducted under the same experimental set-
tings compared to ours. When training the backbone (Point-
Net++ [Qi et al., 2017] ), the Adam optimizer was employed
with an initial learning rate of 0.001 and a weight decay of
0.0001. The learning rate decayed by a factor of 0.5 every
20 epochs. All experiments were conducted on four NVIDIA
GeForce RTX 4090 GPUs, each with 24GB of memory.

5.1 Comparison with the SOTA Methods
In this section, we conduct comparative experiments in the
synthetic dataset (i.e., ArtImage) with the classical methods,
aiming to verify the effectiveness of our PAGE. Tab. 1 demon-
strates the quantitative results. 1) When considered as a
whole, our method has comprehensively refreshed the SOTA
results, which proves the effectiveness of the coordination of
each proposed module. 2) When considered separately, we
get the best pose estimation result lies in category laptop, with
(4.0◦,1.7◦), (0.014m,0.019m) for rotation error and trans-
lation error. This can be attributed to our keypoint generation
strategy, which can better generalize to objects with uniform
geometric scales. Considering the 3D IoU metric, our pre-
diction errors are significantly better at each part compared to
the baseline model (A-NCSH), with the average value 57.5%
vs. 48.5%.

Qualitative results in Fig. 4 (left) further highlight that our
predictions closely align with GT, confirming the robustness
and precision of our approach.

5.2 Ablation Study



Configuration Keypoints
Numbers

Per-part Pose
rotation error (◦) ↓ translation error (m) ↓

I FPS 11.2, 12.6 0.086, 0.112
II BBox 9.8, 10.5 0.042, 0.085

III (Ours) Pre-defined 1.9, 5.4 0.013, 0.032
Configuration Fusion Per-part Pose

IV Concat 2.6, 7.1 0.025, 0.056
V Dense 2.3, 6.5 0.020, 0.045

VI (Ours) - 1.9, 5.4 0.013, 0.032

Table 2: Ablation Study. It is noted that experiments are conducted
on the category Scissors.

Pre-defined Keypoints. As mentioned in Sec. 4.1, we pro-
pose that methods of pre-defined keypoints can outperform
the heuristic methods. Therefore, we conduct detailed abla-
tion experiments in this section. Results are shown in Tab. 2
(I - III). It is noted that the FPS and BBox based keypoint gen-
eration methods are adopted from [Zhao et al., 2020]. From
the quantitative results, we can conclude that: our method
significantly outperforms the heuristic methods (i.e., FPS and
BBox based methods) by a large margin, which reported (1.9◦

and 5.4◦) and (0.013m, 0.032m) with our methods. All in
all, the proposed method not only addresses the distribution
of keypoints but also takes into account the geometric and
structural relationships of the articulation, optimizing through
three geometry-sensitive loss functions (see Sec. 4.1). This is
crucial for modeling the pose of objects based on keypoints.

Fusion Manner. In this work, we propose a novel multi-
modal learning method coined geometric-color alignment as
detailed in Sec. 4.2. To verify the effectiveness of the pro-
posed module, we conduct the ablation experiments in Tab. 2
(IV - VI). Note that configuration IV represents the direct
concatenation of depth and RGB features. Configuration V
represents the method from densefusion [Wang et al., 2019].
It can be inferred that our method achieves state-of-the-art
performance, while the traditional method (i.e., direct con-
catenation) suffers from severe performance degradation due
to noisy feature alignment.

5.3 Generalization Capacity
Experiments on Semi-Synthetic Scenarios. ReArtMix
dataset is used to evaluate our method, which incorporates
semi-synthetic scenarios. The detailed results are presented
in Tab. 3. Our approach achieves the best performance on the
Drawer category, with rotation error of only 1.2◦, and trans-
lation error of 0.013m and 0.017m. This demonstrates that
our method is equally effective in Semi-Synthetic Scenarios,
showcasing its robustness and adaptability across diverse ob-
ject categories and scenes. Qualitative results for the five cat-
egories are illustrated in Fig. 4 (Right).
Experiments on Real-world Scenarios. We further train
and evaluate PAGE on the 7-part RobotArm dataset in real-
world scenarios. As shown in the quantitative results (Tab. 4),
our method achieves superior performance in per-part pose
estimation compared to the baseline A-NCSH. Specifically,
PAGE significantly reduces both rotation and translation er-
rors. For rotation errors, PAGE achieves notable improve-
ments across parts 1 to 7, with average rotation errors reduced
to 7.5◦ compared to 12.1◦ of A-NCSH. Similarly, for trans-
lation errors, PAGE maintains an average error of 0.044m,

Category Method Per-part Pose
rotation error (◦) ↓ translation error (m) ↓

Box A-NCSH 4.1, 3.5 0.023, 0.034
PAGE 4.4, 1.3 0.015, 0.017

Stapler A-NCSH 5.1, 6.4 0.034, 0.041
PAGE 2.6, 3.1 0.027, 0.031

Cutter A-NCSH 3.1, 3.4 0.017, 0.021
PAGE 1.4, 1.4 0.015, 0.016

Scissors A-NCSH 5.7, 5.4 0.013, 0.015
PAGE 1.6, 1.3 0.018, 0.012

Drawer A-NCSH 3.4, 3.6 0.022, 0.021
PAGE 1.2, 1.2 0.013, 0.017

Table 3: Pose Estimating Results on ReArtMix Dataset.

Figure 5: Qualitative Results on 7-part RobotArm dataset.

outperforming the baseline’s 0.126m. While accumulative
errors are observed in deeper kinematic structures (5th, 6th,
and 7th parts), our method demonstrates greater robustness
against these challenges compared to the baseline, which ex-
hibits more significant accumulative errors in both rotation
and translation. Qualitative results are illustrated in Fig. 5.

Per-part Rotation Error (°)
Part ID 1 2 3 4 5 6 7

A-NCSH 7.6 7.8 10.1 10.3 10.8 15.7 22.3
PAGE 3.7 3.4 3.5 4.6 5.5 12.1 19.8

Per-part Translation Error (m)
Part ID 1 2 3 4 5 6 7

A-NCSH 0.011 0.042 0.066 0.060 0.075 0.232 0.399
PAGE 0.003 0.006 0.011 0.013 0.018 0.089 0.167

Table 4: Quantitative Results on RobotArm Dataset.

6 Conclusion
In this work, we propose a novel framework, PAGE, to
address category-level articulation pose estimation through
multi-modal alignment. Our approach focuses on sequen-
tially aligning geometry and color features, followed by ef-
fective feature fusion. To overcome the limitations of heuris-
tic keypoints, we introduce a tailored pre-defined keypoint
estimation method that enhances pose estimation perfor-
mance. Additionally, a proposal integration scoring strategy
is employed to accurately determine the 6D pose of articu-
lated objects. Experimental results demonstrate that PAGE
achieves state-of-the-art performance on the synthetic Ar-
tImage dataset and exhibits strong generalization capabili-
ties on the semi-synthetic ReArtMix dataset and real-world
multi-hinged articulated object datasets (e.g., RobotArm).
These results underscore the robustness and adaptability of
our method across diverse scenarios.
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