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Abstract— Articulated objects are commonly found in daily
life. It is essential that robots can exhibit robust perception
and manipulation skills for articulated objects in real-world
robotic applications. However, existing methods for articulated
objects insufficiently address noise in point clouds and struggle
to bridge the gap between simulation and reality, thus limiting
the practical deployment in real-world scenarios. To tackle these
challenges, we propose a framework towards Robust Perception
and Manipulation for Articulated Objects (RPMArt), which
learns to estimate the articulation parameters and manipulate
the articulation part from the noisy point cloud. Our primary
contribution is a Robust Articulation Network (RoArtNet) that
is able to predict both joint parameters and affordable points
robustly by local feature learning and point tuple voting. More-
over, we introduce an articulation-aware classification scheme
to enhance its ability for sim-to-real transfer. Finally, with the
estimated affordable point and articulation joint constraint, the
robot can generate robust actions to manipulate articulated
objects. After learning only from synthetic data, RPMArt is
able to transfer zero-shot to real-world articulated objects.
Experimental results confirm our approach’s effectiveness, with
our framework achieving state-of-the-art performance in both
noise-added simulation and real-world environments. Code,
data and more results can be found on the project website
at https://r-pmart.github.io.

I. INTRODUCTION

Human life is populated with articulated objects, ranging
from household appliances such as microwaves and refrig-
erators, to storage units such as safes and cabinets. Robust
perception and manipulation for those objects by robots in
the real world can liberate humans from mundane daily tasks.
Composed of more than one rigid part connected by joints
allowing rotational or translational movements, articulated
objects own high degree of freedom and large state space,
which makes the visual perception and downstream manip-
ulation challenging [1]. However, such geometric structure
and physical constraints also provide useful clues for their
perception and manipulation (see Fig. 1 (b)).

Recently, with the development of deep learning, substan-
tial efforts have been devoted to studying the perception
and manipulation for articulated objects. Prior works adapted
powerful point cloud processing networks to estimate the
kinematic articulation structures and parameters [2–5], and
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Fig. 1: RPMArt framework to tackle the real-world articulated
objects perception and manipulation. (a) During training, voting
targets are generated by part segmentation, joint parameters and
affordable points from the simulator to supervise RoArtNet. (b)
Given the real-world noisy point cloud observation, RoArtNet
can still generate robust joint parameters and affordable points
estimation by point tuple voting. Then, affordable initial grasp
poses can be selected from AnyGrasp-generated grasp poses based
on the estimated affordable points, and subsequent actions can be
constrained by the estimated joint parameters.

leveraged them to produce corresponding action trajecto-
ries [6, 7]. Another line of works explored manipulation
tasks by directly imitating end-to-end demonstrations or
reinforcement learning [8, 9]. Despite their success, building
robust and reliable robots to manipulate articulated objects
within noisy observations in the real world has not yet
been investigated well. To achieve this goal, two primary
challenges need to be addressed. (i) Point clouds from the
real world are often noisy due to bad lighting and depth
camera measurement error, while real-world articulation
datasets are rare and always expensive to acquire. As a
result, it is essential to introduce sim-to-real techniques to
bridge the gap when training only on synthetic data. (ii)
Articulated object manipulation involves both semantic and
physical requirements. Grasping the relevant part requires
semantic understanding of the object, and the action space
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is constrained by the physical articulation joint.
To handle the above challenges, we propose a framework

towards Robust Perception and Manipulation for Articulated
Objects (RPMArt), which learns to estimate the articulation
parameters and manipulate the articulation part from the
noisy point cloud as depicted in Fig. 1. We draw inspi-
rations from BeyondPPF [10, 11], a sim-to-real 9D object
pose estimation method, which formulates the problem of
pose estimation as a voting process. Given the point cloud,
several point tuples are sampled, and a Robust Articulation
Network (RoArtNet) is trained to generate the offsets to
the articulation joints and affordable points from the local
features of these point tuples. For each point tuple, RoArtNet
votes several target candidates. After enumerating all the
candidates, the target with the most votes is regarded as
the final estimation. Moreover, we introduce an articulation-
aware classification scheme to make RoArtNet aware of
articulated objects’ unique geometric structure, facilitating
better sim-to-real transfer. Finally, AnyGrasp [12] is used to
propose a series of candidate grasp poses and the affordable
initial grasp pose is selected based on the estimated afford-
able point. And the robot manipulation actions are guided
by the estimated articulation joint using impedance control.
RPMArt is trained only on synthetic data and is able to
transfer zero-shot to real-world articulated objects. We con-
duct extensive experiments in both simulation and real-world
environments, and achieve state-of-the-art performance.

Overall, our contributions are summarized as follows:
• We present RoArtNet, a robust articulation network that

takes an articulation-aware voting approach based on lo-
cal point tuple features to estimate joint parameters and
affordable points robustly, facilitating effective transfer
to real-world scenarios.

• We employ affordance-based, physics-guided manipu-
lation to generate effective and robust actions executed
by the robot, incorporating affordable grasp selection
and articulation joint constraint.

• We conduct comprehensive experiments in both simu-
lation and real world, and achieve state-of-the-art per-
formance on both perception and manipulation tasks.

II. RELATED WORK

Articulation perception has been studied for decades,
where early stage methods often recover the poses for dif-
ferent parts with prior instance information available such as
CAD models [13, 14]. More recently, with the development
of deep learning techniques, articulation perception from raw
sensory data becomes possible. Hu et al. [15] introduced
a part mobility model to map the single static snapshot
to dynamic units in the training set. Though this querying
method can achieve motion prediction and transfer to the
input object, it needs part segmentation as prior information.
Shape2Motion [2] takes a two-stage method with mobility
proposal and optimization networks to segment motion parts
and estimate joint poses, but it is trained and tested on the
whole point clouds. The following methods [3–5, 7, 16]
exploit strong point cloud processing backbones [17–19]

to model articulated objects from single-view point clouds.
Though they achieve accurate estimation on synthetic artic-
ulated objects, their generalization to the real-world cases
is not guaranteed, especially in the presence of unexpected
noise. This work deals with single-view real-world point
clouds, with only synthetic data used for training.

Articulated object manipulation aims to manipulate
the movable part of the articulated object by a robot, and
prior works can be broadly categorized into learning-based
and planning-based. Some learning-based methods leverage
imitation learning [8, 20] or reinforcement learning [9, 21] to
learn policy from collected robot demonstrations. However,
collecting high-quality demonstrations is time-consuming
and expensive. Another line of learning-based methods relies
on learning visual affordance heatmap [22, 23] to select
contact poses and predict actions [1, 24, 25]. However, the
affordance heatmap is ambiguous and hard to annotate. On
the other hand, planning-based methods often compute a
motion trajectory with some geometry knowledge perfectly
known [26, 27] or estimated visually [28, 29]. This work lies
in the planning-based methods but also learns affordance to
incorporate semantic understanding.

Sim-to-real transfer is commonly needed in many real-
world application fields. Although there is vast literature on
rigid objects pose estimation [10, 11, 30, 31], a few works
have been devoted to articulated objects perception and
manipulation. Like other fields, ReArtNOCS [32] renders
scanned articulated object models under different real scene
backgrounds to synthesize data for training of articulation
poses. However, it still does not take care of the domain
gap between synthetic and real point clouds, and this tricky
rendering process implicitly makes an assumption of test data
distribution. This work draws inspirations from BeyondPPF
[11] and wants to narrow the sim-to-real gap for articulated
objects perception and manipulation.

III. PROBLEM FORMULATION

(a) Revolute part

(b) Prismatic part

dir.

orig. afford.

Fig. 2: Illustration of joint pa-
rameters and affordable points
on articulated objects.

Our perception goal is to
estimate the joint parame-
ters and affordable points
from an observed artic-
ulated object’s 3D point
cloud P ∈ RN×3 backpro-
jected from a single depth
image, where N denotes the
number of points (see Fig.
2). Following other works
[4, 7], we only consider 1D
revolute joints and 1D pris-
matic joints. And we formu-
late the joint parameters as
{uj ,qj | j = 1, . . . , J},
where uj ∈ R3 is the direc-
tion of the joint axis, qj ∈
R3 is the origin of the joint axis, and J denotes the number
of joints an articulated object comprises. Note that the origin
of prismatic joint is also considered and defined as the center

7271

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on January 02,2025 at 03:21:00 UTC from IEEE Xplore.  Restrictions apply. 



of part front surface in its rest state. Unlike previous works,
affordable points {aj ∈ R3 | j = 1, . . . , J} instead of
part segmentation or part bounding boxes are estimated.
The affordable point represents the affordance [22, 23] peak
among the space, indicating the potential interaction between
robot and object which is the most likely to succeed. Our
manipulation tasks include pulling and pushing the articula-
tion part by a robot with a two-finger parallel gripper, while
ensuring that the change of joint state exceeds a specific
threshold.

IV. METHOD

RPMArt uses RoArtNet, an articulation perception method
to estimate joint parameters and affordable points from a
noisy point cloud (depicted in Fig. 3), followed by an
affordance-based, physics-guided manipulation pipeline (de-
picted in Fig. 1 (b)). First, several point tuples are sam-
pled from the point cloud, and RoArtNet votes the joint
parameters and affordable points based on these samples’
local features (detailed in Sec. IV-A). Moreover, RoArtNet is
supervised by an articulation-aware classification loss during
training, and selects votes with high articulation scores for
sim-to-real transfer during inference (detailed in Sec. IV-
B). Finally, RPMArt selects an affordable initial grasp pose
based on the estimated affordable point and executes subse-
quent actions constrained by the estimated joint parameters
(detailed in Sec. IV-C).

A. RoArtNet for Point Tuple Voting

We draw inspirations from BeyondPPF [11], which is a
sim-to-real rigid object pose estimation method that achieves
state-of-the-art performance. Unlike most point cloud pro-
cessing algorithms [18, 33, 34], we want to refrain from
aggregating global features of the whole point cloud and only
rely on some distinctive local patterns. Thus, given the point
cloud P , we sample K point tuples from it, and each point
tuple contains M points, with the first two points p1 and p2

as the major points. For each point tuple T = {p1, . . . ,pM},
we extract the following features as the network input:

F1 = concat({pi − pj | (i, j) ∈ σ2(M)}), (1)

F2 = concat({max (ni · nj ,−ni · nj) | (i, j) ∈ σ2(M)}),
(2)

F3 = concat({s′i | i = 1, . . . ,M}), (3)

where concat means concatenation, σ2(M) represents
all combinations of order 2 from M (a.k.a. M choose
2), {n1, . . . ,nM} represents the normals of T , and
{s′1, . . . , s′M} is computed by MLP layers encoding the
SHOT [35] features {s1, . . . , sM} of T . Here, F1 represents
the relative geometry information, while F2 and F3 contain
the local context features around each point. Note that
all these three features are translation invariant, while F2

and F3 are rotation invariant. Rendering under different
camera poses can also make F1 rotation invariant. Such local
features can help adapt to different situations, enhancing
model robustness.

The network is implemented as a residual [36] MLP, and
predicts several offsets to the joint origin q and joint direction
u with respect to the major points p1 and p2:

µ = −−→p1q ·
−−−→p1p2∥∥−−−→p1p2

∥∥
2

, (4)

ν =

∥∥∥∥∥q−

(
p1 + µ

−−−→p1p2∥∥−−−→p1p2

∥∥
2

)∥∥∥∥∥
2

, (5)

θ = u ·
−−−→p1p2∥∥−−−→p1p2

∥∥
2

. (6)

RoArtNet also predicts offsets to the affordable point a for
subsequent grasp pose selection (see Sec. IV-C):

µa = −−→p1a ·
−−−→p1p2∥∥−−−→p1p2

∥∥
2

, (7)

νa =

∥∥∥∥∥a−

(
p1 + µa

−−−→p1p2∥∥−−−→p1p2

∥∥
2

)∥∥∥∥∥
2

. (8)

Once µ and ν are fixed, q is determined with up to
one degree-of-freedom ambiguity in a circle, similar for
a by µa and νa. Similarly, once θ is fixed, u lies on
a conical surface with one degree-of-freedom ambiguity.
Thus, during inference, we can generate multiple candidates
with a constant degree interval along the circle or cone for
each point tuple, and the target will emerge with the most
votes, as demonstrated in Fig. 3 (c). Such voting scheme
implicitly recognizes the distinctive local patterns, alleviating
interference from noisy points.

For each point tuple T , we optimize the joint origin loss
lTorig and affordable point origin loss lTafford by mean squared
error. Like other work [37], we optimize the joint direction
loss lTdir under the classification-based case by KL divergence.
Formally, the vote loss for each tuple T is defined as:

lTvote = lTorig + λd · lTdir + λa · lTafford, (9)

where λd and λa are two weights to balance the influence
of different terms.

B. Articulation Awareness

After examining point clouds of both simulated and real-
world articulated objects, we find that the distinctive artic-
ulation structure, featuring a movable part connected to the
base either at an angle or with an offset, is shared commonly
among various articulated objects and even preserves in the
real-world noisy point clouds. Such a common structure can
facilitate the generalization and sim-to-real transfer of the
model. To make RoArtNet aware of the articulation structure,
an additional articulation score cj is used to supervise the
network during training. The ground truth articulation score
{cj | j = 1, . . . , J} of a sampled point tuple T is calculated
based on the part segmentation {Mj | j = 0, . . . , J}:

cj =

{
1, if (p1,p2) ∈ (M0,Mj) or (p1,p2) ∈ (Mj ,M0)

0, otherwise
,

(10)
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(a) Sample point tuples (b) Predict voting targets (c) Enumerate target candidates (d) Vote final results
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Fig. 3: Overview of RoArtNet. First, (a) a collection of M -point tuples (M = 3 here as an example) are uniformly sampled from the
point cloud. For each point tuple, (b) we predict several voting targets with a neural network from the local context features of the point
tuple. Further, an articulation score c is applied to supervise the neural network so that the network is aware of the articulation structure.
Then, (c) we can generate multiple candidates using the predicted voting targets, given the one degree-of-freedom ambiguity constraint.
(d) The candidate joint origin, joint direction and affordable point with the most votes, from only point tuples with high articulation score,
are selected as the final estimation.

where M0 denotes the mask of the base. This articulation
score favors the point tuples whose two major points are
located separately in the target part and the base. And the
articulation awareness loss Lart is defined as the binary cross
entropy between cj and predicted ĉj :

Lart = − 1

JK

J∑
j=1

∑
Tk

(
ckj log ĉ

k
j + (1− ckj ) log(1− ĉkj )

)
.

(11)
During training, we only optimize the vote loss of the point
tuples with articulation score as 1:

Lvote =
1

JC

J∑
j=1

∑
Ti

{lTi
vote | cij = 1}, (12)

where C = card({lTi
vote | cij = 1}), and card(·) means the

cardinality of a set. Therefore, our final loss is defined as:

L = Lvote + λaa · Lart, (13)

where λaa represents the weight of Lart term. And during
inference, only the votes by point tuples with articulation
score higher than 0.5 are kept for voting.

C. Affordance-based Physics-guided Manipulation

To start manipulating the articulated object, the robot
needs to first grasp the target part. We use AnyGrasp [12]
to generate a collection of grasp poses G = {Gg ∈ SE(3) |
g = 1, . . . , G} given the point cloud P . In order to select
one from these grasp poses that can manipulate the target
part, we utilize the estimated affordable point. Currently, the
grasp pose with minimum distance to the affordable point
is selected. We define the affordable point for each part
as the affordance [22, 23] peak among the part space, and
we manually annotate the ground truth of affordable points.
Typically, the affordable point lies on the edge center of the
movable part, as shown in Fig. 2.

After grasping the target part, we explicitly exploit the
estimated articulation joint and robot’s proprioception to
generate manipulation actions. In each time step t, we can

sense current gripper pose Tt in robot base space and
calculate the target pose T̂t+1 with respect to the estimated
articulation joint:

T̂t+1 =

{
Rot(δ,u,q) ·Tt, if revolute joint
Tr(δ,u) ·Tt, if prismatic joint

, (14)

where Rot(δ,u,q) represents the transformation matrix for
rotating δ angle about axis (u,q), and Tr(δ,u) represents
the transformation matrix for translating δ distance along
direction u. We employ an impedance controller [38] to
realize the actuation torques for reaching target poses.

V. EXPERIMENTS

We perform our experiments in both simulated and real-
world environments, and validate our framework by an-
swering the following questions: (i) Can RoArtNet robustly
estimate joint parameters and affordable points from point
clouds with different levels of noise? (ii) Can RPMArt still
manipulate articulated objects successfully under observation
noise? (iii) Can RPMArt transfer zero-shot to real-world
articulated objects?

A. Environmental Setup

Settings. We conduct the simulated experiments in the
SAPIEN simulator [39], which supports physical simulation
for robots and articulated objects interaction. It also provides
depth map and part-level information rendering. We use
a Panda flying two-finger parallel gripper to perform the
manipulation tasks. In our real-world environment, a 7-
DOF Franka Emika robot arm with an Intel RealSense
L515 LiDAR camera mounted on the robot’s wrist is used
to observe and manipulate real-world articulated objects.
Computing is done on a NVIDIA A100 GPU.

Datasets. In total, we use 74 synthetic objects in 6 selected
categories from PartNet-Mobility [40, 41]. And we randomly
split them into training and testing instances. For each
instance, we import it into SAPIEN simulator, scale it into
normal object size with [0.8, 1.1] additional varying range,
and randomly set joint states within the joint limit ranges. A
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(c) Affordable point estimation results

Fig. 4: Articulation perception results. We gradually add higher level of noise to the input point clouds, and test the joint parameters
and affordable points estimation performance. Lower is better. Results are averaged across six object categories. Error bars represent the
standard deviation. Different noise levels are detailed in Sec. V-B. More detailed results for each category are listed on our website.

camera with 640×480 resolution is used to capture the depth
map and part-level mask. We spherically sample the camera
viewpoint in front of the target object, with camera looking
at the center of the target object. For the spherical sampling,
we set the range of the azimuth angle to [-60◦, 60◦], and the
elevation angle to [0◦, 60◦]. The distance between camera
and object is uniformly distributed in [0.6, 1.2] meter. In
practice, we sample 40 different states for each object and
5 camera views for each state to render data. Additionally,
we also collect one real object instance for each selected
category, and capture its point cloud under different joint
states and camera views. Note that we only use the synthetic
training instances for training, and conduct evaluation over
the synthetic testing instances and real-world objects.

Implementation details. We set the number of sampled
point tuples K to 100,000 and each point tuple contains M =
5 points. And we set the loss weights λd = 0.1, λa = 1.0
and λaa = 0.5 in all our implementation.

Baselines. We compare our method to three baselines: (i) a
naive PointNet++ [18] that takes the point cloud as input and
directly outputs the joint parameters and affordable points;
(ii) ANCSH [4] that exploits normalized coordinate space to
estimate joint parameters and uses RANSAC [42] to optimize
the transformation to the camera space; (iii) GAMMA [7]
that learns dense projection offsets to vote joint parameters
and dense clustering offsets to group part points. For ANCSH
and GAMMA, we mimic their joint origin estimation and add
an additional head for affordable point estimation. And we
also use their perception results to finish manipulation tasks.

B. Articulation Perception Results

Metrics. We evaluate the orientation error of the joint
axis direction in degrees. We evaluate the translation error of
the joint axis origin using the minimum line-to-line distance
in centimeters for revolute joints, and using L2 distance
in centimeters for prismatic joints. And we evaluate the
translation error of the affordable point using L2 distance
in centimeters.

Results. To validate the robustness of our method, we test
the models on the point clouds with different levels of noise.
Like PointCleanNet [43], we add two types of noise to raw

point clouds. For the distortion noise, a certain percentage
ρd of points are sampled and added Gaussian noise with
the standard deviation as the proportion σd of the original
point cloud’s bounding box diagonal. And for the outlier
noise, a certain percentage ρo of points are sampled and
replaced with random points that are generated by uniformly
sampling among a larger bounding box, whose size is the
proportion σo of the original bounding box, with the same
center. In our experiments, five levels of (ρd, σd, ρo, σo)
are tested, as (0, 0, 0, 0), (0.1, 0.01, 0.001, 1.0), (0.2,
0.01, 0.002, 1.0), (0.1, 0.02, 0.001, 2.0), and (0.2, 0.02,
0.002, 2.0). Fig. 4 presents the articulation perception results.
Results show that all baselines and RoArtNet achieve high
estimation precision without noise added. Nevertheless, with
the increasing level of noise, all three baselines exhibit a
pronounced increase in estimation errors, with 5.1× to 15.3×
increase. In contrast, the mean estimation error of RoArtNet
increases very slowly, with 1.9× to 2.7× increase. And the
baselines also have much higher standard deviation compared
to RoArtNet when high level of noise is added. In addition,
we also conduct an ablation study to analyze the influence of
articulation awareness. We use votes from all point tuples to
determine the final estimation, rather than discarding point
tuples with low articulation score. The performance within
the Microwave category under noise level 2 is shown in
Table I. The performance degrades, especially for affordable
point estimation, underscoring the robustness brought by
articulation awareness.

TABLE I: Ablation study on articulation awareness.

Model Error ↓
Orig. (cm) Dir. (◦) Afford. (cm)

Ours w/o awareness 4.81±3.97 5.04±4.03 13.33±10.10

Ours (full) 3.34±3.11 4.53±3.84 6.62±4.88

C. Articulated Object Manipulation Results
Metrics. We run around 100 interaction trials per artic-

ulated object instance and report success rates of changing
the target joint state over a threshold ratio (here we set 0.85)
of specific task value (here we randomly choose a rate from
[0.1, 0.7] of the joint limit).
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Fig. 5: Articulated object manipulation results. We report the success rate averaged among around 100 trials per object instance for each
task. Higher is better. Selected noise levels are detailed in Sec. V-C. More results for other tasks are shown on our website.

Results. Like in the articulation perception experiments,
we also add noise to the observed point clouds with different
levels of (ρd, σd, ρo, σo), as (0, 0, 0, 0), (0.2, 0.01, 0.002,
1.0), and (0.2, 0.02, 0.002, 2.0). Fig. 5 shows six example
task results. It is clear that our method achieves the highest
success rate under noise level 4 across all tasks. And we can
observe the least degradation in performance of our method
with the increase of noise. In addition, we also implement
ablation studies to validate different components of our ma-
nipulation within the Microwave category under noise level
2, as presented in Table II. We first use the grasp score pre-
dicted by AnyGrasp instead of the estimated affordable point
to select the initial grasp pose. The performance degrades
to much lower success rates, highlighting the importance
of affordance-based semantic understanding. Then, we also
attempt to plan the entire trajectory at the initial stage instead
of constraining by the estimated joint parameters in each time
step. The success rate also decreases, indicating the necessity
of physical constraints by the articulation joint.

TABLE II: Ablation studies on our affordance-based physics-
guided manipulation.

Method Success rate (%) ↑
Pull Push

Ours w/o affordance 38.953 29.286
Ours w/o constraint 77.326 95.714

Ours (full) 88.953 97.857

D. Real-world Experiments

To validate the ability for sim-to-real transfer of our
framework, we also conduct real-world experiments using
our model, trained only on synthetic data.

Articulation perception. We first collect point clouds
of six real articulated objects under different conditions,
including scenarios with and without background, as well
as presence or absence of distractors. We capture depth
images for each object with 5 uniformly selected joint states,
each from 20 randomly selected camera views. Then we
use our trained models to estimate the joint parameters
and affordable points. The quantitative results, excluding

TABLE III: Quantitative evaluation of the performance on real-
world articulation perception.

Category Method Error ↓
Orig. (cm) Dir. (◦) Afford. (cm)

Microwave

PointNet++ [18] 4.49±3.57 9.27±5.83 15.44±4.73

ANCSH [4] 5.10±5.52 9.17±9.56 12.71±7.93

GAMMA [7] 2.53±2.90 9.91±10.67 7.24±10.19

RoArtNet (ours) 3.83±2.37 5.19±3.62 6.75±3.28

Refrigerator

PointNet++ [18] 5.21±4.27 9.60±5.34 12.47±9.50

ANCSH [4] 5.94±5.80 8.00±5.91 12.81±13.60

GAMMA [7] 4.02±4.58 8.68±6.46 12.33±9.97

RoArtNet (ours) 2.11±1.70 8.49±4.27 5.85±2.80

Safe

PointNet++ [18] 5.99±4.16 5.94±2.86 9.23±5.63

ANCSH [4] 5.17±6.76 7.71±14.28 8.51±9.77

GAMMA [7] 3.18±3.86 8.16±13.74 9.06±9.67

RoArtNet (ours) 4.12±2.43 5.88±2.77 8.35±4.39

Storage
Furniture

PointNet++ [18] 7.54±4.52 8.78±4.99 10.63±4.03

ANCSH [4] 6.41±4.22 9.61±6.40 5.18±6.02

GAMMA [7] 3.48±2.28 12.67±10.19 4.74±6.66

RoArtNet (ours) 4.60±2.05 9.68±5.45 7.945±3.40

Drawer

PointNet++ [18] 8.33±3.38 7.86±5.30 10.23±4.46

ANCSH [4] 13.85±3.76 12.14±8.03 7.72±4.70

GAMMA [7] 5.06±2.36 14.67±6.77 6.97±3.11

RoArtNet (ours) 5.99±3.06 11.31±5.60 7.73±5.25

Washing
Machine

PointNet++ [18] 8.85±6.80 37.50±20.68 19.97±9.44

ANCSH [4] 5.16±4.92 16.24±12.09 11.54±8.23

GAMMA [7] 6.49±6.18 28.44±14.87 15.96±13.29

RoArtNet (ours) 1.58±1.20 5.60±2.71 3.25±0.67

TABLE IV: Real-world articulated object manipulation results. We
run 10 trials for each task and count the number of successful/half-
successful/failed trials respectively, where half-successful trials in-
clude behaviors like detaching during pulling and pushing force-
fully.

Tasks PointNet++
[18]

ANCSH
[4]

GAMMA
[7]

RPMArt
(ours)

Microwave Pull 6/2/2 4/0/6 8/1/1 9/1/0
Push 5/4/1 3/4/3 6/3/1 7/1/2

Refrigerator Pull 2/1/7 1/1/8 3/1/6 7/0/3
Push 0/0/10 1/0/9 2/0/8 8/1/1

Safe Pull 7/0/3 5/2/3 5/1/4 7/0/3
Push 7/0/3 7/1/2 7/1/2 7/1/2

Storage
Furniture

Pull 1/0/9 3/1/6 2/1/7 4/0/6
Push 2/2/6 6/2/2 2/3/5 5/2/3

Drawer Pull 1/1/8 2/1/7 0/2/8 2/2/6
Push 2/0/8 2/1/7 0/0/10 3/2/5

Washing
Machine

Pull 0/0/10 0/1/9 0/0/10 3/3/4
Push 0/0/10 0/0/10 0/0/10 1/2/7
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Fig. 6: Qualitative results of the performance on real-world artic-
ulation perception. Color is used only for visualization here. Red
arrows represent the estimated articulation joints, and blue points
represent the estimated affordable points. Zoom in for better view.
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Fig. 7: Real-world manipulation experiments.

backgrounds and distractors, are shown in Table III. We also
visualize the estimation results with both background and
distractors included in Fig. 6. We can find that RoArtNet
demonstrates more stable performance compared to other
baselines. However, some performance degradation is found
in the StorageFurniture and Drawer categories for RoArtNet,
as well as for ANCSH and GAMMA. This could possibly
be attributed to the relatively small size of parts in these two
objects, where all three models somewhat rely on part seg-
mentation to complete the estimation. Another noteworthy
observation pertains to the performance on WashingMachine.
Specifically, only RoArtNet successfully estimates targets ac-
curately, while the other three baselines exhibit significantly
large estimation errors. We find a potential reason that we
take a relatively small washing machine toy as the object,
then the influence of noisy points is relative significant.

Articulated object manipulation. We also apply the
models to manipulate the real articulated objects. We run
10 trials for each task, and count the number of successful,
half-successful and failed trials. Here, half-successful trials
include behaviors like detaching during pulling and pushing
forcefully. Table IV shows the statistics, and Fig. 7 illustrates
the manipulation process. Videos are available on our web-

site. Our method outperforms other counterparts, especially
for Refrigerator and WashingMachine. Refrigerator has a
glossy surface, while WashingMachine is relatively small,
which makes the noise more prominent.

VI. CONCLUSION

We present RPMArt, a framework towards robust percep-
tion and manipulation for articulated objects. At its core,
RoArtNet learns local context features from sampled point
tuples to vote the joint parameters and affordable points
robustly. To further improve its capability for sim-to-real
transfer, articulation awareness is introduced to account for
the unique geometric structure of articulated objects. Finally,
we use the estimated affordable point to select the affordable
initial grasp pose and generate manipulation actions guided
by the estimated joint constraints. Experiments show that
RPMArt achieves state-of-the-art performance in both noise-
added simulation and real-world environments. Currently,
RoArtNet can only achieve category-level generalization.
In future work, we will explore methods that can also
accomplish robust cross-category estimation.
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