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When Pansharpening Meets Graph Convolution
Network and Knowledge Distillation

Keyu Yan™, Man Zhou™, Liu Liu

Abstract—1In this article, we propose a novel graph convolu-
tional network (GCN) for pansharpening, defined as GCPNet,
which consists of three main modules: the spatial GCN module
(SGCN), the spectral band GCN module (BGCN), and the
atrous spatial pyramid module (ASPM). Specifically, due to the
nature of GCN, the proposed SGCN and BGCN are capable of
exploring the long-range relationship between the object and the
global state in the spatial and spectral aspects, which benefits
pansharpened results and has not been fully investigated before.
In addition, the designed ASPM is equipped with multiscale
atrous convolutions and learns richer local feature informa-
tion, so as to cover the objects of different sizes in satellite
images. To further enhance the representation of our proposed
GCPNet, asynchronous knowledge distillation is introduced to
provide compact features by heterogeneous task imitation in a
teacher—student paradigm. In the paradigm, the teacher network
acts as a variational autoencoder to extract compact features
of the ground-truth MS images. The student network, devised
for pansharpening, is trained with the assistance of the teacher
network to transfer the important information of the expected
ground-truth MS images. Extensive experimental results on dif-
ferent satellite datasets demonstrate that our proposed network
outperforms the state-of-the-art methods both visually and quan-
titatively. The source code is released at https://github.com/Keyu-
Yan/GCPNet.

Index Terms— Asynchronous knowledge distillation, atrous
convolution, graph convolutional network (GCN), pansharpening.

I. INTRODUCTION

N THE field of remote sensing, with the development

of imaging systems and satellite technology, abundant
satellite images are available in daily life. However, limited
by the hardware conditions of multispectral imaging devices,
currently, common optical satellites (such as WordView and
GaoFen) usually provide two types of remote sensing images:
multispectral image low-resolution multispectral (LMS) with
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rich spectral information but low spatial resolution, and
panchromatic image (PAN) with rich spatial details but only
gray information [1]. In order to obtain a high spatial quality
multispectral image, the goal of pansharpening is to fuse LMS
and PAN by integrating their complementary advantages for
the purpose of improving the spatial quality of the fused
image (MS) on the premise of preserving multispectral infor-
mation as much as possible. Considering the above utility, the
pansharpening task is generally regarded as a key preprocess-
ing step for many remote sensing data applications [2]-[4],
such as object detection [5]-[7], land cover classification [8],
urban impervious surface extraction [9], and change detec-
tion [10]. Traditional pansharpening methods usually require
reasonable assumptions based on prior knowledge; otherwise,
it is easy to cause distortion of fused images. In addition, these
methods of traditional transformation only have the ability
of shallow nonlinear expression; therefore, it is difficult to
achieve a good balance between the improvement of spatial
quality and the maintenance of spectral quality.

Afterward, inspired by the success of deep learning over
natural image processing, deep learning has been introduced
to the field of pansharpening in recent years by virtue of
its powerful ability to significantly represent local complex
structures. Pansharpening networks based on the convolutional
neural network (CNN) [11], [12] have been proposed that can
learn nonlinear mapping and high semantic features from a
large number of paired images, significantly improving the
performance and robustness of the pansharpening process.
Despite remarkable results, several commonly recognized
issues remain to be solved.

1) Insufficient Feature Extraction: Most of the existing
methods only stack pure feedforward convolution operations
to extract the features without fully exploring its potentials
like long-rang information and cross-spectral relationship, thus
limiting the model performance. Like the latest advance,
Cai and Huang [2] tend to improve performance by continu-
ously deepening the network, which leads to the introduction
of more parameters in the training process of the deep network,
resulting in the increase of memory and computation.

2) Scale Variance: Different satellite images have differ-
ent resolutions, and the scale of imaging objects will be
different, so the problem of multiscale cannot be ignored.
Some solutions exploit multiple convolution kernels with
different receptive fields but bring huge computational costs.
Furthermore, the unsupervised pansharpening method [13]
that aims to handle differences between features according to
the characteristics of the spectral information and multiscale
information does not require a large dataset and the availability
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of ground-truth MS but needs to design appropriate constraints
to obtain useful feature representation.

3) Inefficient Utilization of Ground Truth: As recognized,
the ground-truth multispectral (MS) images possess the com-
plementary information (e.g., high-frequency component) of
low-resolution (LR) MS images, which can be considered as
privileged information to alleviate the spectral distortion and
insufficient spatial texture enhancement. Since existing pan-
sharpening methods only utilize the ground-truth MS image
to supervise the network training, its potential value has not
been fully explored.

To solve the problems mentioned above, we propose the
novel graph convolutional network (GCN) for pansharpening,
defined as GCPNet, which consists of three main modules: the
spatial GCN module (SGCN), the spectral band GCN module
(BGCN), and the atrous spatial pyramid module (ASPM). The
proposed GCPNet aims to integrate the long-range information
through GCN, make full use of the internal relationship in the
spatial and spectral dimensions, and support image reconstruc-
tion by obtaining global spatial information and cross-spectral
relationship. This just makes up for the disadvantage of CNN’s
focusing on local information, which is not conducive to image
reconstruction and leads to the loss of feature information
due to prior geometric shapes. The designed ASPM learns
multiscale feature information and obtains different receptive
fields through atrous convolutions of different sizes in series
and parallel, so as to adapt to objects of different sizes in
satellite images. In addition, to fully explore the potential
of ground truth, we also adopt a new method of knowledge
distillation, asynchronous knowledge distillation, where the
teacher and the student deal with different tasks, but the
teacher can learn more compact information and transfer
knowledge to the student through feature distillation to further
enhance the student’s pansharpening ability. In Fig. 1, the point
closer to the left suggests higher speed or fewer parameters,
and it can be seen that GCPNet is located in the upper left
corner of the coordinate system and achieves state-of-the-art
performance.

The main contributions of the proposed GCPNet are given
as follows.

1) We propose an efficient GCPNet model for pansharpen-
ing, which uses SGCN and spectral BGCN to explore the
long-range spatial and spectral relations, and ASPM to
learn multiscale information. Because of the innovative
design of the GCN module that can effectively capture
features, the whole model also has absolute advantages
over the latest models in terms of the number of para-
meters and computation.

An ASPM is designed, which obtains a variety of
receptive field sizes through serial and parallel con-
nections of empty convolution, with stronger nonlinear
expression ability and avoids information loss caused
by upsampling and downsampling operations commonly
used in previous multiscale modules. The ASPM can
aggregate multiscale features and significantly improve
the representation ability of neural networks.

2)
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Fig. 1. Performance versus speed and trainable parameter numbers. Points
closer to the left suggest higher speed or fewer parameters, while points closer
to the right suggest better performance.

3) We redevelop a new knowledge distillation frame-
work for pansharpening and devise an encoder—decoder
teacher network of knowledge distillation to transfer the
important knowledge of the ground-truth MS images to
the student network to enhance its representation.

The remaining part of this article is organized as follows.
Section II gives a brief review of related works. Section III
describes, in detail, the proposed network and asynchro-
nous knowledge distillation. Section IV illustrates comparative
experiments and ablation experiments. Section V contains the
conclusion.

II. RELATED WORK
A. Pansharpening

Now that remote sensing image fusion is helpful for many
remote sensing applications; many pansharpening algorithms
have been proposed by researchers in recent years. There
are many traditional image fusion methods, mainly including
the component substitution method and the multiresolution
analysis method. Of course, there are other methods based
on model optimization, the hybrid method [14], the varia-
tion method [15], and the sparse-representation method [16].
As the most traditional fusion method, the component sub-
stitution method first projects the multispectral image into
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a new space, then replaces its structural components with
PANs in whole or in part, and then obtains the final fusion
result through the inverse transformation of space. It mainly
includes the intensity—hue—saturation (IHS) methods [17], the
principal component analysis (PCA) methods [18], [19], the
Gram—Schmidt (GS) methods [20], the Brovey transformation
methods [21], and so on. However, as a certain component
of MS is considered to be all spatial information, it actually
contains certain spectral information, so the fusion results
obtained by simply replacing these components with PAN
often have spectral distortion. The multiresolution analysis
methods mainly include the Wavelet transform [22], the
Laplacian pyramid transform [23], the nonsubsampled con-
tourlet transform [24], the curvelet transform [25], and so on.
By extracting spatial details from PANs and injecting them
into the upsampled multispectral images at different scales,
spatial resolutions, and decomposition layers, the final high-
resolution multispectral images can be obtained. For the most
part, these methods can maintain good spectral features, but
there will be a distortion of spatial structure in the satellite
images.

These traditional methods mentioned above are mostly
linear model fusion, which can only reflect the limited prior
knowledge of images, so it is difficult to achieve a good
balance between improving spatial quality and maintaining
spectral quality. The complex transformations between spectral
and spatial domains should be considered highly nonlinear.
In order to maintain the fidelity of these images observed,
we need highly nonlinear functions for simulation. With the
development of deep learning, CNN has been applied to the
study of satellite image fusion, and a good fusion effect has
been achieved depending on its nonlinear advantages in the
mapping process [26]-[29]. For example, Zhong et al. [30]
proposed a pansharpening method combining the super-
resolution convolution neural network SRCNN [31] model
and GS transformation. Although this method achieves good
results, it is not an end-to-end mapping process and does not
completely leave the traditional method. In order to model the
pansharpening process as end-to-end mapping, Masi et al. [12]
proposed a network named PNN. However, direct learn-
ing of the relationship between low-resolution images and
high-resolution images would have more redundancy, mak-
ing it difficult to learn the model well. Yang er al. [32]
designed PANNet architecture by adding upsampled multi-
spectral images to the network’s output, transmitting spectral
information directly to reconstructed images, and training the
network’s parameters in high-pass filtering domain. However,
these methods are only simply stacking models in image
classification; even so, the final effect of the model is far
superior to the traditional methods. Cai and Huang [2] have
achieved good results in pansharpening by using the method
of image super-resolution, but the amount of computation and
parameter is greatly increased. Both MSDCNN [33], which
is proposed to extract multiscale features, and GPPNN [34],
which has two optimization problems regularized by the deep
prior, are carefully designed for pansharpening to improve
efficiency and generate the high-quality image. Besides,
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Qu et al. [13] adopted the fully connected layers in the
pansharpening network, but the number of network parameters
will increase significantly, and the network consumes more
testing time.

B. Graph Convolutional Network

Research on the graph neural network (GNN) can be traced
back to the pioneering work of Scarselli et al. [35]. They
designed mapping functions from graph structure space to
the m-dimensional Euclidean space and proposed a super-
vised learning algorithm that can update parameters in GNN
models. However, this model does not use convolution. Later,
Bruna et al. [36] combined the idea of convolution in the
spectrum graph theory with GNN and the proposed graph
convolution network (GCN). Different from CNN, which relies
heavily on the geometry of prior conditions, GCN eases the
assumption of prior conditions, which takes the research object
as the node and the correlation or similarity between objects as
the edge. It can deal with complex paired interactions and inte-
grate global spatial data, make full use of the internal relations
between objects, and mine invisible relations between objects.
In recent years, the graph convolution theory has developed
rapidly. It has not only been widely applied to various high-
level vision tasks, such as action recognition [37] and semantic
segmentation [38], [39], but also started to be used to solve
low-level vision tasks, such as image inpainting [40], image
deraining [41], and image denoising [42]. Furthermore, dual
GCNs [43] with different mapping strategies become popular.
Bandara er al. [44] proposed spatial and interaction space
graph reasoning to extract roads from aerial images. As far as
we know, GCN is currently used for very little hyperspectral
imagery. Qin et al. [45] and Wan et al. [46] have related
work, but it is limited to the task of hyperspectral image
classification [47]-[49]. We are the first to apply GCN to
pansharpening to improve the quality of results by proposing
SGCN and BGCN in a cascaded manner to efficiently and
effectively capture long-range and global spatial and spectral
information.

C. Knowledge Distillation

Early knowledge distillation framework [50] uses a large
and cumbersome teacher model to supervise the learning
process of a smaller and faster student model to achieve the
purpose of the compression model. Nowadays, knowledge
distillation [51]-[53] usually transfers knowledge between two
deep models, transferring the representation ability of the
teacher model to the student model to improve the perfor-
mance of the student model. Inspired by this idea, we propose
an asynchronous knowledge distillation method to improve the
performance of the lightweight student model. Specifically, the
teacher and the student handle different tasks, and the teacher
can learn more potential knowledge while working on his own
task and then pass this information on to the student through
distillation to help the student complete the pansharpening
task.
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Fig. 2. Overall structure of the proposed graph convolutional framework consists of two main parts: the encoder network and the decoder network, including
SGCN, spectral BGCN, and ASPM. Note that we have defined the decoder network here as GCPNet.

III. PROPOSED METHOD

In this section, we outline the proposed graph convolutional
framework (GCPNet) and elaborate on the three key compo-
nents: the SGCN module, the spectral BGCN module, and
ASPM. In addition, we introduce the realization method of
asynchronous knowledge distillation.

A. Overall Network Architecture

CNN can only process data of local structures, but we desire
to extract long-range and global features effectively. Therefore,
GCNs, which can describe one-to-many relationships of data,
have become the focus of research. However, the most existing
deep learning methods to handle pansharpening tasks usually
just use CNN blocks as the main feature extraction units.
We design a new network that can extract spatial and spectral
information very efficiently through GCN.

Fig. 2 presents the flowchart of the proposed method that
consists of two major components: the encoder network and
the decoder network. In the training process of asynchronous
knowledge distillation, the encoder—decoder network will be
used, but we only need the decoder network called GCPNet
for the actual pansharpening task.

We denote input image as X and the network output image
as Y. Thus, the inputs and outputs of the decoder network
can be expressed as Xgys € RV *C, Xpany € RV*H 1 and
Yus € RV*H*C where W and H represent the width and
height of the image, C is the number of image bands,
and Xpys is obtained by Xpys € RwxhxC through bicubic
interpolation upsampling. The original goal is to generate the
high spatial resolution and high spectral resolution image from
the input image Xpys and Xpan via solving the following
optimization problem:

mxin L(f (Xpms, Xpan)> Xwms)- M

We turn the problem into an approximate optimization
problem

)

where f(.) refers to the operation of the proposed GCPN
method and £ is a loss function.

In the following, we give details of GCPNet. Large con-
volution kernel size is adopted in both input and output

m)}n L(f (Xwms, Xpan), Xus)

parts of the network, which is a common technique used in
existing methods [12], [32]. Because of its large receptive
field, it can obtain global features and maintain the original
image structure, which is conducive to extracting features by
GCN and reconstructing the network’s output image. In the
intermediate structure of the network, a small convolution
kernel size is used to pay attention to details and reduce the
number of parameters.

We deploy the SGCN module to capture local-to-global
spatial information. Then, this spatial information is sent into
the ASPM to assist the network to extract multiscale local
spatial features. The shapes of different landforms are different
at different spatial scales, so this effect must also be taken into
account during panchromatic sharpening. To obtain spectral
information that is complementary to spatial information,
we employ the spectral BGCN module to explore the corre-
lation among the features that contain rich global and local
spectral representations. Furthermore, we adopt symmetric
skip connections to link shallow and deep layers. This can not
only avoid the gradient vanishing but also propagate image
detail to improve the pansharpening performance.

B. Spatial GCN Module (SGCN)

Graph convolution allows the model to aggregate the global
pixels at all spatial positions as the response at a position. The
purpose of this module is to explore the relationship between
one pixel and all pixels in the feature map. Let a feature map
be F € RV*WxH where N is the number of channel, and
W and H are the width and height of F, respectively. The
graph convolution is defined as the simple form by Kipf and
Welling [54]

Z = AFO 3)
where Z is the convolved signal matrix, A is the adjacency
matrix, and ® is a matrix of filter parameters. Similar to the
nonlocal network [55] which can be thought of as a form of
fully connected GCN, we use three convolution layers on the
input feature map Fy,€ RV*">*# to reduce the channel number
from N to (N/2). As shown in Fig. 3, we use ¢(-), 6(-),
and J(-) to represent the three convolution layers mentioned
above. The new feature is defined in the form of spatial graph
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convolution learning

Zscen = AsgenFOscen
= ¢ (Fin)0(Fin) "0(Fin) Oscen €

where Zgsgen is output of SGCN and T is the transpose
operation. ¢(-)d(-)T is performed by matrix multiplication
and can be seen as the adjacency matrix ASGCN. To simulate
block operations, these 1 x 1 convolution layers [¢(-), 6(-),
and J(-)] are implemented to replace the n x n sliding
window, which is used in the traditional nonlocal algorithms.
According to the associative rule, we replace the original
term (p(-)0(-)")d(-) with ¢(-)(@(-)Td(:)). By doing so, the
computational complexity of the measurement matrix can be
reduced from O((WH)?) to O((WH)) compared with the
generic nonlocal module [55]. In order to obtain the global
feature correlation, we multiply the features of the output of
the d(-) convolution layer and #(-) convolution layer by the
matrix and then multiply the features of the output of the
¢ (+) convolution layer. The softmax operation is used to avoid
numerical instabilities and is found to give better convergence
[56]. The weighting process of ®, a hidden-to-output weight
matrix, is conducted by using one 1 x 1 convolution layer to
perform the operation.

Finally, before output, the features are further tuned via the
1 x 1 convolution block by the following formula:

Fsgen = BN(Zsgen) Wsaen + Fin (5)

where BN(-) refers to the batch normalization operation and
Wsaen denotes the weight of the output convolution layer. For
residual learning, we add the item of Fj,.
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C. Spectral Band GCN Module (BGCN)

Different from natural images, MS images have a unique
near infrared band (NIR) in addition to red, green, and
blue color channels. PAN images, however, have only single-
band channel. As for the pansharpening problem, panchro-
matic (PAN) and multispectral (MS) images need to trade
off not only in spatial resolution but also in spectral space.
In order to effectively utilize the internal relationship between
PAN images and MS images of different bands, we designed
the spectral BGCN module to reason the spectral correlation.
We model our spectral BGCN as

Zpcen = (I + Apoen)FOgaen (6)

where Apgeny € RW/S*W/8) is the adjacency matrix mea-
suring the relations of the graph, and @pgey € RW/H*N/4
is the weight matrix. Note that both of these matrices are
implemented by 1 x 1 1-D convolutions and learned from
data. We utilize identity matrix I to propagate the node features
over the graph to perform Laplacian smoothing, which is also
used in [57], [58].

In practice, we first adopt two 1 x 1 2-D convolution layers
[o(-) and v(-)] on the input feature F;, € RV*W*H# 5 (.) aims
to reduce the dimension, which can reduce the computation
and the number of parameters. v(-)" is projection weights,
which can map original features to the spectral interaction
space [57]. Thus, the size of feature F in (6) is (N/8) x
(N/4). From the perspective of a graph, this means that there
are (N/8) nodes, and the dimension of each node is (N/4).
Through Aggen and @pgen, We construct a fully connected
graph on the F to obtain the spectral relationship. As shown
in Fig. 3, the procedure of this module can be expressed as

Zicen = (I+ Apgen)o (Fin) v (Fin) T®pgen (7
Fpoen = fr(ZBgen) + Fin (8)

where function fr(-) denotes the hidden-to-output operation
used for the image reconstruction. Since the dimension of gen-
erated graph Zggen is (N/8) x (N/4), we add one function
fr(-) to reverse project and readjust feature to the form of
feature map. Specifically, we first multiply the generated graph
Zscen by v (Fyy) and then utilize one 2-D convolutional layer
&(-) to transform the number of bands to N. Finally, the output
feature map Fpgen € RV*W*H can participate in subsequent
operations, whose shape is the same as Fj,. By deploying the
spectral BGCN module into the GCPNet, our model can focus
on the correlation between different spectral in the generated
MS images.

D. Atrous Spatial Pyramid Module (ASPM)

In remote sensing images, the subjects of images are usually
vehicles, houses, fields, mountains, and so on. However, there
are often large-scale differences among these objects. There-
fore, spatial scale is a relatively important factor in restoring
high spatial resolution images. For multiscale problems, the
pyramid pooling module (PMM) [59] and atrous spatial pyra-
mid pooling (ASPP) [60] methods are widely used in related
tasks. Different from previous methods, we specially designed
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for pansharpening the ASPM structure, which is responsible
for the feature extraction in different scales.

PMM extracts features of different scales by pooling layers
of different sizes and, finally, restores the original input feature
map size by bilinear interpolation. However, using the pooling
layer in the module for downsampling can cause the loss of
information. ASPP abandons the pooling layer and uses the
parallel connection of atrous convolutions to generate multiple
types of features from different spatial scales so that the
obtained features keep the same size as the original image,
avoiding downsampling and upsampling operations in PMM.

As shown in Fig. 4, our ASPM also takes atrous con-
volutions, acquiring different receptive fields by combining
parallel and cascade connections of atrous convolutions. In this
way, we only need two types of atrous convolution to make
the fused feature Faspy have the same receptive fields as
ASPP, ie., 3 x 3,5 x 5,7 x 7, and 13 x 13. Finally,
a 1 x 1 convolution operation is used to fuse different recep-
tive field features to enhance feature representation ability.

This module can obtain the multiscale features from local
spatial regions contained in the fusion features, which is
exactly compensated with the two GCN modules proposed
to learn the global space and spectral bands, respectively.

E. Asynchronous Knowledge Distillation

As shown in Fig. 5, we propose an asynchronous knowledge
distillation framework, which contains an encoder—decoder
teacher network and a pansharpening network (GCPNet). The
student and teacher’s decoder networks are designed to have
the same architecture, but the tasks that they should handle
are different. In order to help train the pansharpening network
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later, we let the teacher network learn how to reconstruct
ground truth from high-resolution multispectral (MS) images
and high-resolution single-band panchromatic (PAN) images.
In the experiments, the teacher network can accurately recover
the ground truth, so we consider that the teacher learned the
distribution of high-resolution multispectral images and can
provide the student with favorable prior knowledge to help it
learn how to restore high-resolution multispectral images (MS)
from low-resolution multispectral (LMS) images and high-
resolution single-band panchromatic (PAN) images.

Since the input of the teacher network is MS image Xys,
the output YI\T/IS should be as similar as possible to the input
image Xys so that teacher network only learns to copy the
input image to rebuild MS image but cannot extract useful
features. Therefore, we exploit the encoder—decoder architec-
ture to promote the teacher to extract valuable information and
facilitate the transfer of favorable prior knowledge to students
via the decoder network. It first projects the MS image into
a low-dimensional feature space and then uses the generated
BMS and PAN images to restore the original MS image so
that teacher can learn to extract better feature representation
to complete the task of MS image reconstruction. We apply
pansharpening loss £7 and imitation loss L to train the
teacher network. Specifically, the EIT, loss is defined as the
mean square error between Xy and Yy

N W H

p ZNZZZXMSU J) = YiisG, J))

where W and H are the width and the height of the MS image,
respectively. N denotes the number of images in a training
batch. X}s(i, j) denotes the intensity value of the nth Xy
at position (i,j) and so is Y} 5(1 j)- The £I term limits the
representation ability of the encoder and makes the encoder’s
output close to Xpys image. The imitation loss computes mean
absolute error between Xgms and Ygyms defined as

©)

N W H

ZZZ‘X ms (s J) —

where W and H' are width and height of the BMS image,
respectively. In summary, the final teacher’s loss function is
the sum of the two losses

cro= EIT, +aTc!

sum

tws@ )| (10)

(1)

where AT is applied to balance the contributions between EZ
and L].

After training the teacher network, we initialize the weight
of the student network with the weight of the decoder in the
teacher, so as to transfer the teacher’s reconstruction ability
to the students [51], [61]. Then, we fix the parameters of the
teacher network and further train the student network with
pansharpening loss LIIS, and distillation loss £3. LIIS, is similarly
defined as £

1 2S00 2
=N Yoo, )

12)

n=1 i

N w H
ST (Xisln ) -
J
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Teacher

f Teacher training

Student training

Xypus interpolation Xgus

t weight initialization

MS

image
S
YMS

Fig. 5. Overview of our asynchronous knowledge distillation framework. The teacher network inputs an MS image and extracts a feature representation Ygms
of an approximate BMS image using an encoder. Then, the decoder network reconstructs an MS image output. To train the teacher network, we use imitation
loss and pansharpening loss. After training the teacher, the student network is initialized with the weights of the decoder in the teacher network (red line).
Note that the student network and the decoder share the same network architecture. To train the student network, we use distillation loss and pansharpening

loss. (Best viewed in color.)

According to the experimental results, teacher has stronger
pansharpening ability, so the term distillation is used to
impart teacher’s knowledge to student. Specifically, the £5
loss minimizes the featurewise error between the teacher’s
feature map and the student’s feature map. The feature maps
from penultimate convolution layer in the decoder are used to
calculate distillation loss. The £3 loss is computed by

1 N W H
L=y DX FG ) -EGH) a3
n=1 i J

where Fz and F,f are the feature maps of teacher and student

networks, respectively. Overall, we use the following loss to
train the student network:

s s S psS

Lom =L, + 1Ly

sum

(14)

where A5 is a distillation parameter. The experimental results
show that the performance of our GCPNet can be further
improved by asynchronous knowledge distillation.

1V. EXPERIMENTS
A. Datasets and Implementation Details

We conduct several experiments on datasets collected by
GaoFen-2 (GF2), WordView II (WV2), and WordView III
(WV3). The spatial resolutions of WV2, WV3, and GF2 on
MS and PAN images were 0.5 and 1.8 m, 0.31 and 1.24 m,
and 1 and 4 m, respectively. Following the previous works
[33], [62], we crop the original satellite images into MS
image patches of 128 x 128 x 4 and PAN image patches of
128 x 128 x 1, and further downsample the MS images
into LMS image patches of 32 x 32 x 4 through bicubic
interpolation. We split the datasets of the three satellites into
90% for training and 10% for validation approximately.

First, in order to train the teacher network, we use stochastic
gradient descent (SGD) with a momentum equal to 0.9 to
minimize the objective function in (11), where A7 of (11)
is set to le-4. We set the minibatch size to 8, the initial
learning rate to 0.01, and the number of total training epochs
to 2000, and decrease the learning rate by a factor of 10 in
the 1000th epoch. The numbers of iterations in one epoch on
GaoFen-2 (GF2), WorldView III (WV3), and WorldView II
(WV2) are 1017, 807, and 285, respectively. In addition, we set
the threshold of gradient clipping to 0.1. Although the model
convergence will be slower, this can make the training process
more stable.

After training the teacher network, we also use SGD with
a momentum equal to 0.9 to minimize the objective function
in (13), where A5 is set to le-6. We set the minibatch size
to 4, the threshold of gradient clipping to 0.2, the initial
learning rate to 0.01, and the number of total training epochs
to 2000 and decrease the learning rate by a factor of 10 in the
1600th epoch.

Models are implemented via PyTorch on GTX TITAN X
GPUs on the desktop with Ubuntu 18.04, CUDA 10.2, and
CUDNN 7.5.

We evaluate the algorithm performance using the follow-
ing six image quality assessment (IQA) metrics that can be
calculated with references and are widely used in pansharp-
ening missions: the peak signal-to-noise ratio (PSNR), the
structural similarity index (SSIM), the spectral angle mapper
(SAM) [63], the relative dimensionless global error in syn-
thesis (ERGAS), the spatial correlation coefficient (SCC), and
the four-band extension of Q (Q4). Furthermore, we adopt the
spectral distortion index D;, the spatial distortion index Dy,
and the quality with no reference (QNR) method to evaluate
the results of reference-free measure. The best values for these
metrics are +oo, 1, 0, 0, 1, 1, 0, 0, and 1, respectively.
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TABLE I

QUANTITATIVE COMPARISON OF NINE METHODS ON THE GAOFEN-2 DATASETS. THE BEST, SECOND BEST, AND THIRD BEST RESULTS ARE
HIGHLIGHTED BY RED, BLUE, AND UNDERLINE, RESPECTIVELY. 7 INDICATES THAT THE LARGER THE VALUE, THE BETTER THE
PERFORMANCE, AND |, INDICATES THAT THE SMALLER THE VALUE, THE BETTER THE PERFORMANCE

Methods | PSNR+ SSIMT SAM| ERGAS] SCCt Q1 Dyl Dg]l QNR?
Brovey 37.7974 09026  0.0218 1.3720 0.6446 03857  0.0905  0.1443  0.7790
THS 38.1754 09100  0.0243 1.5336 0.6738  0.3682  0.0418  0.1345  0.8301
SFIM 36.9060  0.8882  0.0318 1.7398 0.8128 04349 00691  0.1312  0.8109
Wavelet 357502 0.8213  0.0283 2.0418 0.6515 02859  0.1718 02424  0.6292
GSA 359480  0.8779  0.0368 1.9257 0.8005 04235 00669 0.1411  0.8035
CNMF 393127 0.9299  0.0249 1.3325 0.8343 04864  0.0499  0.1143  0.8422
GFPCA 37.9443 09204  0.0314 1.5604 0.8032  0.3236  0.0898  0.1815  0.7445
PNN 43.1208 09704  0.0172 0.8528 0.9400  0.7390  0.0387  0.1162  0.8494
PANNet | 43.0659  0.9685  0.0178 0.8577 0.9402  0.7309  0.0369  0.1219  0.8455
MSDCNN | 45.6874 09827  0.0135 0.6389 0.9526 07759  0.0368 0.1112  0.8560
SRPPNN | 47.1998 09877  0.0106 0.5586 0.9564  0.7900  0.0364  0.1087  0.8588
GPPNN | 442145 09815  0.0137 0.7361 0.9510  0.7721  0.0360  0.1005  0.8669
Ours 474165 09892  0.0102 0.5472 0.9601  0.8031  0.0327  0.0999  0.8706
TABLE II

QUANTITATIVE COMPARISON OF NINE METHODS ON THE WORDVIEW Il DATASETS. THE BEST, SECOND BEST, AND THIRD BEST RESULTS ARE
HIGHLIGHTED BY RED, BLUE, AND UNDERLINE, RESPECTIVELY. 1 INDICATES THAT THE LARGER THE VALUE, THE BETTER THE
PERFORMANCE, AND |, INDICATES THAT THE SMALLER THE VALUE, THE BETTER THE PERFORMANCE

Methods | PSNR+ SSIM+ SAM| ERGAS] SCCt Q1 Dyl Dgl QNR?
Brovey 358646 09216  0.0403 1.8238 0.8913  0.6163 00770  0.1360  0.7977
THS 352962 09027  0.0461 2.0278 0.8534 05704 00774  0.1578  0.7770
SFIM 34.1297  0.8975  0.0439 2.3449 0.9079  0.6064  0.0915  0.1277  0.7942
Wavelet 34.9827  0.8806  0.0481 2.0907 0.8752  0.5489  0.1102  0.1701  0.7396
GSA 36.3574 09219  0.0397 1.7401 0.9313  0.6506 00616  0.1144  0.8320
CNMF 37.0400 09374  0.0354 1.5741 0.9383  0.6636  0.0621  0.1137  0.8325
GFPCA 34.5580 09038  0.0488 2.1400 0.8924  0.4665 0.1016  0.1656  0.7508
PNN 407550 09624  0.0259 1.0646 0.9677  0.7426  0.0650  0.1186  0.8250
PANNet | 408176  0.9626  0.0257 1.0557 0.9680  0.7437  0.0645 0.1189  0.8252
MSDCNN | 413355  0.9664  0.0242 0.9940 0.9721  0.7577 0.0635 0.1172  0.8276
SRPPNN | 414538 09679  0.0233 0.9899 0.9729  0.7691  0.0637  0.1164  0.8281
GPPNN | 41.1622 09684  0.0244 1.0315 0.9722  0.7627  0.0642  0.1163  0.8278
Ours 41.8228 09694  0.0227 0.9291 0.9750  0.7734  0.0653  0.1151  0.8272

B. Comparison With State-of-the-Art Methods

To prove the effectiveness of our proposed method,
we select seven typical traditional algorithms and five
advanced models based on deep learning in recent years.
The traditional algorithms are the Brovey [21], the IHS, the
SFIM, the Wavelet, the GSA, the CNMF, and GFPCA, and the
deep-learning-based algorithms are the PNN [12], the PANNet
[32], the MSDCNN [33], the SRPPNN [2], and the GPPNN.
We conduct several experiments on GF2, WV2, and WV3
datasets between our own model and the selected model to
compare the performance differences between each algorithm.

Table I shows the average performance of multiple experi-
ments for each method that we compared on GaoFen2 satellite
images, where the top three results are marked in red, blue,
and underlined, respectively. As can be seen from Table I,
the performance of the deep learning model is generally
better than that of traditional algorithms, and our method
achieves the best performance in all indicators compared with
previous algorithms. The model proposed by us not only
achieves the optimal performance but also is far less than the
previous best models in terms of the number of parameters and
computation.
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TABLE III

QUANTITATIVE COMPARISON OF NINE METHODS ON THE WORDVIEW III DATASETS. THE BEST, SECOND BEST, AND THIRD BEST RESULTS ARE
HIGHLIGHTED BY RED, BLUE, AND UNDERLINE, RESPECTIVELY. 7 INDICATES THAT THE LARGER THE VALUE, THE BETTER THE
PERFORMANCE, AND |, INDICATES THAT THE SMALLER THE VALUE, THE BETTER THE PERFORMANCE

Methods PSNRT+ SSIMT SAM| ERGAS], SCCt+ Q1 Dy ) Ds| OQNR?
Brovey 225060 05466  0.1159 8.2331 07033 04394  0.0481 02006  0.7603

IHS 22.5579 0.5354 0.1266 8.3616 0.6994  0.4301 0.0356  0.2073 0.7634
SFIM 21.8212 0.5457 0.1208 8.9730 0.6952  0.4531 0.0448  0.1265 0.8347
Wavelet 21.8551 0.5216 0.1368 9.1158 0.6823 0.4356  0.0883 0.1892 0.7401
GSA 21.8845 0.5458 0.1394 9.0781 0.7111 0.4615 0.0460  0.2373 0.7279

CNMF 22.0585 0.5569 0.1194 8.8117 0.7064  0.4534  0.0461 0.1991 0.7640
GFPCA 22.3344 0.4826 0.1294 8.3964 0.6987  0.3115 0.0528  0.1214 0.8325
PNN 29.9418 0.9121 0.0824 3.3206 0.9540  0.8679  0.0460  0.0933 0.8654
PANNet 29.6840 0.9072 0.0851 3.4263 09512  0.8631 0.0474  0.0942 0.8634
MSDCNN 30.3038 09184 0.0782 3.1884 0.9577 0.8763 0.0432  0.0877 0.8732
SRPPNN 30.4346 0.9202 0.0770 3.1553 0.9581 0.8776 ~ 0.0414  0.0909 0.8719
GPPNN 30.1785 0.9175 0.0776 3.2593 0.9568 0.8739  0.0438  0.0936 0.8671
Ours 30.5949 0.9227 0.0755 3.0751 0.9608 0.8834  0.0412  0.0893 0.8739

NN

Brovey

SRPPNN ' GPPNN

PANNet ' MSDCNN Ours

Fig. 6. Qualitative comparison of GCPNet with eight counterparts on a typical satellite image pair from the GF2 dataset. Images in the last two rows
visualize the MSE between the pansharpened results and the ground truth. (Please zoom in to see more details.)

As shown in Table IV, our model uses only 0.08 M of with PANNet and PNN with a similar number of parameters,
memory but has a better performance in all aspects than the GCPNet’s performance is much better than these models.
SRPPNN model with 1.7 M of memory. In addition, our In order to further verify the generalization ability of the
model also has an advantage in computation, which is nearly model, we conduct further experiments on two datasets WV2
fifteen times faster than SRPPNN. Of course, when compared and WV3. From the comparison results in Tables II and III,
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Ground Truth

Ours

GPPN

Qualitative comparison of GCPNet with eight counterparts on a typical satellite image pair from the WV2 dataset. Images in the last two rows

visualize the MSE between the pansharpened results and the ground truth. (Please zoom in to see more details.)

TABLE IV

COMPARISON OF PARAMETERS AND FLOATING-POINT
OPERATIONS OF DEEP LEARNING MODEL

Moldes| PNN PANNet MSDCNN SRPPNN GPPNN Ours
Params [ 0.689 0.688 2.390 17.114  1.198 0.867
FLOPs |1.129 1.127 3916 21.106  1.397 1.417

the GCPNet proposed by us is obviously superior to other
algorithms compared in all reference evaluation indexes and
most reference-free measure indexes, which means that the
model can effectively maintain spatial details and avoid spec-
tral distortion.

In order to more intuitively understand the differences
between various algorithms, we select one sample from each
of the three datasets and display the pansharpening results.
In Figs. 6-8, we only show the results of the image composed
of three bands for visualization purposes, but all spectral bands
are considered quantitatively in our evaluation. To highlight the
differences in detail, the last two lines show the MSE pictures
computed between pansharpening results and the ground truth,
where the closer the color is yellow, the result in this area is
quite different from the real situation.

As shown in Fig. 6, most of the GF2 dataset is of large-scale
mountains, and the problems after satellite image sharpening
are more obvious in the spectrum. Brovey, PNN, PANNet, and
GPPNN all have a significant spectral distortion in a large

area, but our model GCPNet can keep consistent with the
spectrum of ground truth. From the gullies in the MSE picture,
we can see that the results of GCPNet show the smallest area
of yellow, which means that GCPNet can well restore the
original spatial features. Most objects in the WV2 dataset are
ponds and fields, while most objects in the WV3 dataset are
buildings and vehicles. Therefore, the objects in Figs. 7 and 8
are smaller, and the spectral distortion of each part is not
uniform, unlike the large-scale spectral distortion in Fig. 6,
but the restoration of details is more prone to error. In general,
it can be concluded from the MSE pictures that our model that
gives consideration to both global and local features can well
process images of objects of different scales and achieves the
best performance as its results are the closest to the ground
truth.

C. Experiments on Real Full-Resolution Images

In this section, in order to demonstrate the GCPNet’s
generalization capability in real full-resolution images, we fur-
ther perform experiments on 200 sets of full-resolution data
obtained by GaoFen?2 that has not been used during the training
stage. Because the ground-truth MS images in the real-world
full-resolution scenes are not available, we follow the [64],
[65] to adopt D;, Dg, and QNR for evaluation.

The quantitative comparison between the representative
methods and GCPNet is shown in Table V. As can be
seen clearly in Table V, although the SRPPNN and GPPNN
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J

PANNet MSDCNN ~ SRPPNN . GPPNN Ours

Fig. 8. Qualitative comparison of GCPNet with eight counterparts on a typical satellite image pair from the WV3 dataset. Images in the last two rows
visualize the MSE between the pansharpened results and the ground truth. (Please zoom in to see more details.)

TABLE V

NONREFERENCE METRICS ON REAL FULL-RESOLUTION GF2 DATASETS. THE BEST, SECOND BEST, AND THIRD BEST RESULTS ARE HIGHLIGHTED BY
RED, BLUE, AND UNDERLINE, RESPECTIVELY. 1 INDICATES THAT THE LARGER THE VALUE, THE BETTER THE PERFORMANCE,
AND | INDICATES THAT THE SMALLER THE VALUE, THE BETTER THE PERFORMANCE

Metric | Brovey IHS  Wavelet GSA GFPCA PNN PANNet MSDCNN SRPPNN GPPNN  Ours
Dy} | 0.1378 0.0770 0.1782 0.1236  0.0914 0.0746  0.0737 0.0734 0.0767 0.0782  0.0723
Dg | | 02605 0.2985 0.2027 0.2911 0.1635 0.1164 0.1224 0.1151 0.1162 0.1253  0.1144
QNR 1 | 0.6390 0.6485 0.6602 0.6280 0.7615 0.8191 0.8143 0.8215 0.8173 0.8073  0.8265

o T

PANNet MSDNN SRPPNN Ours PA

Fig. 9. Qualitative comparison of GCPNet with nine counterparts on a real full-resolution satellite image pair from the GF2. Note that the Real LMS is
zoomed in for visualization. (Please zoom in to see more details.)

have a good performance on the simulated datasets, they methods in all the indexes. For qualitative evaluation, the
perform poorly on real full-resolution images. On the contrary, visual results obtained by different methods for the real full-
our models can still surpass other competitive pansharpening resolution images are depicted in Fig. 9. The images produced
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TABLE VI
ABLATION STUDIES. 1 INDICATES THAT THE LARGER THE VALUE, THE BETTER THE PERFORMANCE,
AND | INDICATES THAT THE SMALLER THE VALUE, THE BETTER THE PERFORMANCE
Baselinel SGCN BGCN Asy Dstill PSNR 1 SSIM 1 SAM | ERGAS | SCC 1 Q7T
4 X X X 415794 09682 0.0238 09785 09732 0.7679
v X X v 41.6428 09686  0.0235 09772 09736  0.7683
v v X X 41.6477 0.9690 0.0233 0.9417 0.9745 0.7708
v X v X 41.5956 0.9693 0.0229 0.9615 0.9745 0.7703
v v 4 X 41.6823 0.9689 0.0229 0.9344 0.9747 0.7721
v v 4 v 41.8228 09694  0.0227 0.9291 0.9750  0.7734

SGCN: Spatial GCN Module
BGCN: Spectral Band GCN Module
Asy Dstill: Asynchronous Knowledge Distillation

by traditional methods have obvious distortion either in the
spectrum or in space. As PNN and PANNet do not take the
fusion of spectral information into account well, the images
they generated have obvious spectral distortion compared with
the real LMS. Moreover, the images of SRPPNN and GPPNN
have no spectral distortion that can be clearly perceived, but
they have artifacts in spatial details compared with the PAN
image. The effect of MSDCNN and our model seems to be
the best. Through comparison, we can notice that our model
is better than MSDCNN in spectral reconstruction.

D. Ablation Studies

In this section, the ablation experiments are performed
to verify the effectiveness of the proposed method SGCN,
spectral BGCN, ASPM, and the method of asynchronous
knowledge distillation. We replace SGCN and BGCN modules
in the network structure with resblock, which is used as the
basic unit in SRPPNN, as our baselinel network. Because the
resblock that was first presented by He et al. [66] has a similar
residual connection structure to our module, it is widely
used in computer vision tasks because of its good versatility.
Table VI lists four variants of the proposed approach and
the average evaluation results for each variant. The SGCN
and BGCN components and the asynchronous knowledge
distillation method will be analyzed in detail in the following.

1) Validation on SGCN: Graph convolution can aggregate
information between pixels and has the expression ability of
global space. SGCN is used to extract the correlation between
pixels and obtain the global receptive field. To confirm the
effectiveness of this SGCN module, we compare the model
with SCGN to the baselinel model. As shown in the third
line of Table VI, the pansharpening performance of the model
is improved when the GCN module is added to baselinel. SCC
that estimates the spatial correlation coefficient is significantly
improved when SGCN is adopted. These results indicate that
SGCN is beneficial to the expression of spatial features.

2) Validation on BGCN: To verify the contribution of the
proposed BGCN to the extraction of spectral information,
in Table VI, we list the results of the baselinel method with

Fig. 10.  Visualization of long-range correlation. Given one pixel depicted
by the red dot, the SGCN module can attend to all pixels. The pictures in the
right column show the depicted weights of the nodes on the whole graph to
the selected pixel. (Best viewed in color.)

and without BGCN. We notice that the addition of BGCN
reduces the PSNR but can improve the SAM. In addition,
when BGCN is added at the same time as SGCN, the value of
SAM does not increase, and other indicators also improved.
It shows that SGCN and BGCN modules are not mutually
exclusive and can be used together in the model to achieve
better performance.

3) Effectiveness of Asynchronous Knowledge Distillation:
In order to verify the effectiveness of the learning strategy
proposed, we not only compare the method on GCPNet but
also conduct experiments on our baselinel model. In Table VI,
the addition of asynchronous knowledge distillation improves
the performance of both models, indicating that asynchronous
knowledge distillation can improve the representational ability
of models and, thus, bring better performance.

In Fig. 10, we show a visual result about the long-range
correlation captured by the SGCN. Given one pixel from the
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TABLE VII

ABLATION STUDIES. 1 INDICATES THAT THE LARGER THE VALUE, THE BETTER THE PERFORMANCE,
AND | INDICATES THAT THE SMALLER THE VALUE, THE BETTER THE PERFORMANCE

Baseline2 PPM  ASPP ASPM | PSNR+ SSIMT SAM| ERGAS| SCCt Q1
4 X X X 414221 09677  0.0239 0.9795 0.9733  0.7661
v v X X 413519 09670  0.0240 0.9869 0.9722  0.7582
4 X v X 41.5915 09677  0.0236 0.9522 0.9731  0.7665
v X X v 41.6823  0.9689  0.0229 0.9344 0.9747  0.7721

PPM: Pyramid Pooling Module
ASPP: Atrous Spatial Pyramid Pooling
ASPM: Atrous Spatial Pyramid Module

Fig. 11. Visualization of the adjacency matrix in BGCN. (a) Input image.
(b) Adjacency matrix. The redder the color, the bigger the value.

input feature, the depicted weights would be the response
intensity that is the correlation obtained by calculating the
similarity between the feature of the selected pixel and the
features of each location at the whole graph in the feature
dimension. To be specific, we select one pixel from the
output of ¢(Fiy)0(Fin) 0(F;,) whose feature dimension is
(N/2) and then calculate the similarity matrix to obtain the
correlation between nodes. To the best of our knowledge,
after the aggregation operation with the adjacency matrix, the
more correlated nodes will have more similar features. The
correlation between nodes is distinguished by different colors.
The redder the color is, the stronger the correlation among the
pixels in this region and the selected pixel is. As expected,
a single pixel can also aggregate long-range information. Since
BGCN’s adjacency matrix is smaller, it is more convenient to
display, so we visualize the adjacency matrix learned from
data to show the long-range correlation between the spectra
in Fig. 11. It can be seen from the adjacency matrix that each
node can more or less aggregate the information from long-
range nodes.

In addition, to verify the advantages of our ASPM over the
approach mentioned in Figs. 4, we conduct another separate
comparative experiment. We replace the ASPM module in
GCPNet with the resblock module as our baseline2 network.
It can be seen from Table VII that the model performance
decreases when PPM is added, which just validates the neg-
ative impact of PPM’s downsampling and upsampling opera-
tions on image recovery. In the last two rows of Table VII, the
performance of ASPM is superior to that of ASPP. We believe

that this is because the ASPM combining serial and parallel
connections has better nonlinear expression capability than the
ASPP that only connects in parallel, which is also mentioned
by Simonyan and Zisserman [67].

V. CONCLUSION

In this study, we innovatively propose an encoder—decoder
network based on graph convolution for pansharpening. The
network structure can further improve the performance of
pansharpening combined with the method of asynchronous
knowledge distillation. Comparing the experimental results
on multiple datasets, it can be concluded that our GCPNet
has a very efficient pansharpening ability because it achieves
state-of-the-art performance and has faster inference speed and
better parameter efficiency than previous models.

The proposed GCPNet includes SGCN, spectral BGCN,
and ASPM. The SGCN and BGCN use graph convolution
to capture global spatial and spectral context information,
respectively. In order to enhance the multiscale capability
of model adaptation and avoid the loss of detail caused by
downsampling operations, we design the ASPM. In addition
to the well-designed network structure, our asynchronous
knowledge distillation method enables the teacher network to
learn additional information from high-resolution multispectral
images that the student network cannot obtain and effectively
transfers knowledge representation from the teacher to the
student.

After numerous experiments, we believe that the proposed
graph convolution method for pansharpening exhibits state-of-
the-art performance. At the same time, we creatively provide
a new way of using graph convolution for pansharpening, and
its excellent performance proves that this approach is worthy
of more research. Without more consideration of the effects of
parameter number and computation, the potential performance
improvement of this method can be further investigated.
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