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Abstract— Odometry estimation is a fundamental technique
for many robotics and autonomous driving applications. Recent
advances using light detection and ranging (LiDAR) and inertial
measurement unit (IMU) sensor-fusion methods show promising
potential in odometry estimation by combining the precise
perception of LiDAR and the high-frequency motion estimation
from IMU sensors. In this article, we propose a novel uncertainty-
aware LiDAR-inertial odometry (LIO) algorithm designed for
autonomous vehicles operating in urban driving environments.
Unlike previous approaches that use point-to-point or point-
to-plane methods for updates, in this article, we employ a
distribution-to-distribution approach for updates. Each point
sampled on a surface is modeled as a Gaussian distribution,
and the covariance is estimated from the decomposed eigenval-
ues by considering the correlation between the current point
and its surrounding points. The estimated covariance makes
the update module aware of match quality, allowing it to
ignore poorly matched points and focus on well-matched ones,
thereby improving odometry accuracy. In addition, it eliminates
Z-axis drift in long-term odometry estimation by using ground
plane information and linearly adjusts pose uncertainty based
on optimized pose values. This unified approach to managing
uncertainty is essential for the system’s long-term stability and
accuracy. We thoroughly evaluated our method using multiple
publicly available datasets. The experimental results show that
our method is accurate and reliable in dynamic urban environ-
ments and achieves state-of-the-art LIO performance with fast
speed and strong generalization ability. We will release the code
of our method here: https://github.com/Gatsby23/UA-LIO.git.

Index Terms— Autonomous driving, iterated error-state
Kalman filter (IESKF), light detection and ranging (LiDAR)-
inertial odometry (LIO), simultaneous localization and mapping
(SLAM), state estimation.
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I. INTRODUCTION

ODOMETRY or ego-motion estimation is a fundamen-
tal task for many robotics and autonomous driving

applications. It provides the pose information of the robot
or vehicle online and plays an important role in down-
stream tasks, such as simultaneous localization and mapping
(SLAM) [1], [2], [3], [4], global localization [5], and path
planning [6], [7]. Recently, multisensor fusion approaches
have shown advances in the odometry estimation task under
urban driving environments. The approaches using inertial
measurement unit (IMU) together with 3-D light detection and
ranging (LiDAR) sensors have gained a lot of interest due to
their accurate and reliable performance under GNSS-denied
environments.

The fusion of these two sensors enhances accuracy by
compensating for the deficiencies of each modality. The core
concept of these algorithms is to use LiDAR data to correct
IMU-induced drift. Based on the used constraint function, they
are categorized as either loosely coupled or tightly coupled.
Loosely coupled strategies estimate the vehicle’s pose by
integrating independent estimates from the two sensors, with
LiDAR-inertial odometry LIO-SAM as a notable example
that employs pose graph optimization. In contrast, tightly
coupled approaches enhance localization accuracy through
direct observations. For example, LIO-Mapping employs
optimization techniques, while FAST-LIO2 utilizes filtering
methods. Benefiting from the precise sensing capabilities of
LiDAR and the high-frequency motion estimation provided by
IMU sensors, filter-based LIO systems have become increas-
ingly favored for their ability to maintain high accuracy
while meeting low computational demands through correctly
matched LiDAR features. Although current LIO algorithms
have demonstrated good accuracy, they often overlook the
issue of mismatched outliers, which is a common problem
in LIO systems.

In practical urban environments, LIO algorithms primar-
ily face two challenges: pose drift caused by mismatched
features during the update process, and Z -axis drift caused
by sparse vertical observations from LiDAR. First, regarding
the mismatch issue, researchers generally attribute it to the
presence of dynamic objects in the scene, which violate the
static environment assumption of SLAM systems, leading to
significant trajectory drift. Although deep learning methods
have been employed to identify and exclude these dynamic
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Fig. 1. Odometry estimation in a dynamic urban driving environment. Our
method models the uncertainty of each LiDAR point to mitigate mismatches
during the matching process, and leveraging the ground plane information to
achieve accurate LiDAR odometry results.

objects to reduce mismatches and enhance pose accuracy, the
inherent lack of texture information in LiDAR data makes
it exceedingly challenging to completely avoid mismatches
in complex urban scenarios. Second, concerning the Z -axis
drift, some researchers attempt to directly enhance the Z -axis
accuracy using ground information provided by LiDAR. How-
ever, this approach can lead to inconsistencies in the system
state within tightly coupled LIO systems, potentially result-
ing in decreased system performance or even failure. Thus,
effectively tackling these two issues is vital for enhancing the
stability and precision of LIO algorithms.

In this article, we have developed an uncertainty-aware LIO
algorithm to tackle two major challenges encountered when
deploying in urban environments, as shown in Fig. 1. For the
first issue, we introduce an update module that incorporates
distribution-to-distribution constraints. Each LiDAR point is
treated as a sample point on a locally sampled plane, and its
relationship with surrounding points is modeled as a Gaussian
distribution. By incorporating the uncertainty derived from
this distribution into the update module, this method enhances
the correction of correctly matched point pairs and reduces
the negative impacts of incorrect matches. For the second
issue, considering that the Gauss–Newton method and iterative
Kalman filtering are equivalent in nonlinear optimization prob-
lems, we treat the ground constraint optimization process as
an update process of the extended Kalman filter. By analyzing
the changes in the pose before and after optimization and
the constraint equations in the optimization process, we can
approximate the gain matrix during the update process and
thus estimate the pose uncertainty after optimization. Adjust-
ing the pose uncertainty effectively enhances the stability of
the LIO system, making long-distance stable operation in
urban environments possible.

In conclusion, we make three key claims.
1) We propose a novel LIO algorithm system that sig-

nificantly enhances the localization accuracy over long
trajectories in large urban environments. This algorithm
will be open-sourced to make a contribution to the
autonomous driving algorithm community.

2) Our algorithm addresses the common issue of mis-
matched features in autonomous driving scenarios by
utilizing a proposed covariance estimation module. This

module estimates covariance based on the decom-
posed eigenvalue from a Gaussian distribution of the
surrounding geometric information. The proposed mod-
ule reduces attention to mismatched point pairs and
increases attention to correctly matched pairs, thereby
enhancing the accuracy of the LIO system.

3) To mitigate z-axis drift over long trajectories in
autonomous driving scenarios, we not only use ground
plane information to suppress drift but also propose a
unified management of pose uncertainty for pose opti-
mization. This unified management is key to maintaining
system stability over long-term trajectories.

II. RELATED WORK

In this section, we review works that use IMU, LiDAR,
and LiDAR-inertial for the odometry task in real urban envi-
ronments. Both IMU [8] and LiDAR [2], [9] sensors have
been widely used individually in pose estimation for robotics
and autonomous driving applications. IMU is small, cheap,
and with high sensor frame rates thus has been applied to
obtain pose information for mobile systems [8]. It is however
influenced by accumulated drift and usually combined with
additional sensors such as LiDAR to achieve accurate odome-
try estimation. Using LiDAR data to estimate the status of the
sensor is a classic topic in robotics and autonomous driving.
One of the primary methods is the iterative closest point
(ICP) algorithm [10]. It aligns two point clouds together and
obtains the relative transformation between them. However,
the sparsity of the LiDAR data would naturally cause a
mismatch during the data association between consecutive
scans. To tackle this issue, Zhang and Singh [2] propose
LOAM, which uses the point-to-edge and the point-to-plane
distance to optimize the ICP error and achieve more accurate
odometry estimates. Other variants of LOAM, such as LeGO-
LOAM [9], a lightweight and ground-optimized algorithm,
utilize ground plane information to inhibit Z -axis drift in
a two-step optimization-based pose estimation. This type of
method uses only LiDAR data, which is vulnerable to fea-
tureless environments.

Combining LiDAR and IMU for odometry becomes the
trend for more reliable odometry by fusing the individual
advantages and compensating for the disadvantages of each
sensor. Several LiDAR-inertial-based odometry methods have
been proposed [11], [12] and can be typically divided into
two groups: the optimized-based algorithms [13], [14], [15]
and the filter-based algorithms [16], [17]. For the optimization
algorithm [12], [18], the LIO-SAM proposed by Shan et al.
[12] performs the best. It uses the sensor odometry estimates
to build the factor graph and correct the pose via pose graph
optimization. The filter-based algorithms consist of two steps.
They first use IMU propagation result to predict the current
status of the sensor system and then use the LiDAR measure-
ments to correct the biases. The FAST-LIO2 by Xu et al. [19]
achieves state-of-the-art performance in LIO, which uses the
flat features of the scan together with the point-to-plane error
distances to correct the biases. Both algorithms rely on the
point cloud registration results for updating the pose, which
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Fig. 2. Overview of the proposed LIO method. Our method is based on the IESKF-based framework to fuse the LiDAR observations with the IMU pose
estimates. The main process of our method is to use the proposed covariance to improve the poses’ accuracy within the IESKF framework. It then uses the
ground plane constraints to eliminate the z-axis drift and further optimize the odometry results.

typically works well in static environments while failing in a
dynamic world.

To tackle the problem of mismatches in urban driving
scenarios, there are multiple works [20], [21], [22], [23], [24],
[25] using semantic information to filter out the dynamic
object to improve LiDAR-based pose estimation. For example,
the semantic-enhanced LiDAR SLAM by Chen et al. [1] uses
the multiclass semantics from a neural network to filter out the
moving pedestrians, cars and other potentially moving objects
on each LiDAR scan. However, this method relies on the
multiclass semantics and may wrongly remove some useful
information such as parked cars. To tackle this issue, they later
propose LiDAR moving object segmentation [21], [22], [23],
[24] that distinctions between the truly moving objects and the
potentially moving objects. These methods only use LiDAR
data, which may fail in featureless environments. The most
related work to ours is by Qian et al. [26], which exploits the
moving object semantics to improve LIO results. However,
it relies on a hand-crafted model, which may need careful
parameter adjustment and its implementation is not publicly
available. However, no algorithm can completely eliminate
dynamic information in the scene. Even if dynamic informa-
tion is entirely removed, mismatches will still occur due to the
inherent lack of texture in the laser data. There have been some
works leveraging covariance to mitigate these issues [27], [28],
[29], [30], but most of them struggle to operate effectively over
large-scale and long-distance trajectories.

Unlike all existing methods, our approach focuses more
on the uncertainty-aware odometry estimation under dynamic

urban environments and explicitly exploits ground information
to enhance the LIO and obtain more accurate pose estimation.

III. METHOD

The overview of our system is shown in Fig. 2. Our method
uses a filter-based framework (see Section III-A) to fuse the
LiDAR observations with the IMU pose estimates. It has
two main modules: the uncertainty-aware enhanced odometry
estimation module (see Section III-C), and the ground plane
optimization module (see Section III-D). We will first review
the iterated error-state Kalman filter (IESKF) framework as
applied to LiDAR-Inertial systems and provide an in-depth
examination of these two specific modules.

A. Background and Notion

Before diving into our proposed method, we first briefly
introduce notations used in LIO and the IESKF-based pipeline.

We define the true state x of the IMU body frame at
timestamp k as

xk =
[

GR⊤

I
GP⊤

I
I R⊤

L
I P⊤

L
Gv⊤

I b⊤
ω b⊤

a
Gg⊤

I

]⊤
. (1)

The left superscript represents the coordinate and the right
subscript represents the body frame of the current sensor. The
G represents the first IMU frame as the global coordinate.
GR⊤

I ∈ SO(3) and GP⊤

I ∈ R3 represents the orientation and
position of the IMU body frame in the global coordinate.
The transformation from the LiDAR frame to the IMU frame
is represented as

[
I RL

I PL
]
, where the I RL ∈ SO(3) and
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the I PL ∈ R3. The vI represents the global velocity of the
IMU body. The bw and ba are the IMU biases modeled
as the random walk process, which is further described in
Section III-C. The Gg is the gravity under the global frame.

Here, we give a brief description of the IESKF. Different
from the extended Kalman filter algorithm, the IESKF is the
recursive form of the Gauss–Newton algorithm. It defines the
propagation of the IMU estimate as the predicted state x̂ with
the process noise µµµ and the true state x without the noise
disturbance. The measurements of the LiDAR observations are
defined as yk = h(x̂k, ζ ). So the update step is to minimize
the equation below

min
xk

∣∣∣∣xk − x̂k
∣∣∣∣2

Pk
+

∣∣∣∣h(
x̂k, 0

)∣∣∣∣
(JkζJ⊤

k )
−1 . (2)

For the propagation part, the body state at time k is denoted
as xk . The predicted state x̂k+1 at time k + 1 is f (x̂k,µµµ) and
the true state xk+1 is f (x̂k, 0). The function f (·) represents the
kinematic of the nonlinear discrete-time system. So the error
state δx at time k + 1 is represented as

δxk+1 = xk+1 − x̂k+1 (3)
≃ Fkδxk + Gk (4)

where the matrix Fk and the matrix Gk is the Jacobian matrix
of the kinematic model with respect to the error state and the
noise vector.

The covariance is updated as

P̂k+1 = FkPkFT
k + GkQGT

k (5)

where the Q is the process noise covariance matrix.
For the update part, the linearization point is xi

k at each
iterations and the start point x0

k+1 = x̂k+1. The right superscript
represents each iteration i . So we get

Ki
k+1 =

(
P̂−1

k+1 + HTζ−1H
)−1H⊤ζ−1 (6)

δxi
k+1 = Ki

k+1

(
Hi

k

(
δxi

k+1

)
− h(xk, 0)

)
(7)

xi+1
k+1 = x̂i+1

k+1 + δxi+1
k+1 (8)

where the H is the Jacobian of the error state at each
linearization point. After convergence, the covariance is

Pk+1 = (I − KH)P̂k+1 (9)

where Pk+1 and xk+1 are then used as the initial guess for the
next iteration.

B. Distribution-Based Awareness of Point Uncertainties

In this section, we will provide a detailed description of
how to make each LiDAR point-matched pair to be aware
of its uncertainty. Inspired by [28] and [31], we assume that
each LiDAR point is sampled at the surface as the center of
a local plane. The position of each LiDAR point is the center
of this plane and we describe this sampling as a Gaussian
distribution: Lpi ∼ N (Lpi , 6i ). The covariance matrix 6i

describes the correlation between the current point and its
20 surrounding points. As shown in Fig. 3, considering that
each point is a sample of a local plane on an object’s surface,
the correct paired points should have the same plane normal.
More specifically, the uncertainty along the plane normal

Fig. 3. Estimation of uncertainty for each LiDAR point.

vector should be lower. So we normalize the covariance matrix
by replacing its eigenvalue with (1, 1, ϵ), where ϵ is a small
value (we set it as 1e−3 in this article).

C. Uncertainty-Aware-Enhanced Odometry Estimation

There are two steps in our filter-based odometry method,
odometry propagation from the IMU and pose correction using
the LiDAR observation. We build our method upon the IESKF
framework. We inherit the pose propagation part but change
the pose correction by integrating our aware uncertainties into
the updation modules. Different from existing methods that use
point-to-plane error metrics in updation modules, our approach
utilizes distribution-to-distribution error metrics, incorporating
uncertainties derived from Section III-B, to achieve more
robust results.

We select the i th point from the current scan as Lpi , and
666i is its corresponding uncertainty. The associated map point
in the online built local map is represented as Gp j . The
observation function ypi is defined as follows:

ypi =
Gp j −

GTI ·
I TL ·

Lpi

ypi ∼
(
0,666 j +

GTI
I TL666i

I T⊤

L
GT⊤

I

)
(10)

where GTI is the matrix form of the [
GR⊤

I ,
GP⊤

I ] and the I TL

is the matrix form of the [
I R⊤

L ,
I P⊤

L ]. We use the KD-Tree to
do the association, and align the current scan with the online
built local point cloud map.

Combined the uncertainty from (10), the i th row the matrix
H derived from the i th residual is calculated as

Hi = ξiξiξi

[
GR⊤

I

[I p
]
×

I3×3
GR⊤

I
I R⊤

L

[Lp
]
×

GR⊤

I

]
. (11)

The matrix ξiξiξi is the result of performing Cholesky
decomposition on the matrix (666 j +

GTI
I TL666i

I T⊤

L
GT⊤

I ).
By substituting H to (6)–(9), we obtain an enhanced odometry
estimates.

D. Ground Plane Optimization

Besides using the aware uncertainties for rejecting the
outliers of paired features to improve the pose correction,
our method further exploits the ground plane information to
eliminate the z-axis drift in a back-end manner. Inspired by
the works [32], [33], we built the ground-plane constraints
upon the pose-graph optimization in the same sliding window
{Sk−N , . . . ,Sk−i . . . ,Sk}. We assume that autonomous cars
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TABLE I
IMU PARAMETERS OF URBANNAV AND ECMD DATASETS

TABLE II
IMU PARAMETERS USED IN REAL-WORLD CAMPUS-LIKE SCENARIOS

TABLE III
IMU PARAMETERS USED IN SIMULATED SCENARIOS

always touch to the ground, and that the ground is always flat
without significant fluctuations. The constraint function can be
defined as yopi

= ygpi
+ ypoi

. Within the past i th scan Sk−i

in the sliding window, we defined the ground plane constraint
function ygpi

as

k−i n⊤
=

k−i Rk−N ·
k−N n⊤ (12)

k−i d =
k−N d −

k−N Pk−i ·
k−i n⊤. (13)

The minimal parameterization of the ground plane normal
information is: τττ(π) =

[
φ ψ d

]
and for each scan Sk−i , it is

represented as

τττ(π)k−i =

[
arctan

(
ny

nx

)
, arctan

(
nz
|nnn|

)
, d

]
(14)

ygpi
= τττ(π)k−N − τττ(π)k−i (15)

which projects the global plane information into the (k − i)th
coordinate, aligns the z-axis to reduces the drift. The ypoi

=

[yθ , yP] is defined as follows:

yθ =
Ii−1 R

−1

Ii

GR
−1

Ii−1

GRIi (16)

yP =
Ii−1 PIi −

GR⊤

Ii−1

(GPIi −
GPIi−1

)
. (17)

In order to calculate the covariance matrix corresponding
to the optimized pose, we treat the optimized pose as the true
state x and the preoptimized pose as the predicted state x̂
in Section III-A and get the error state δx thorough (4).
The corresponding covariance P̂k+1 is the concatenation
of the covariances corresponding to each preoptimized pose
in the sliding window. The linearized matrix H is defined as
H = [H⊤

gp H⊤

θ H⊤

P ]
⊤. The Hgp is

Hgp =

[
03×6 · · ·

∂ygp

∂R
∂ygp

∂P

]
(18)

Hθ =
[
03×6 · · · I3×3 03×3

]
(19)

HP =
[
03×6 · · · 03×3

Ii−1 RG
]
. (20)

In order to simplify the equation, we denote the symbol
k−i n as n′ and the k−i d as d ′. According to the chain the rule,
the (∂ygp/∂R) is (21) and (22), as shown at the bottom of the
next page.

The (∂ygp/∂P) is

∂ygp

∂P
=
∂ygp

∂d ′

∂d ′

∂P
=

 0 0 0
0 0 0

−n′
x −n′

y −n′
z

. (23)

By substituting the H, δx, and the P̂k+1 into (6)–(9),
we obtain the consistent covariance of the optimized state.
From practical testing, the rotation estimation itself is rel-
atively accurate, so we only adjusted the position in the
optimization process.

∂ygp

∂R
=
∂ygp

∂n′

∂n′

∂R
(21)

=


−

n′
y

n′2
x + n′2

y

n′
x

n′2
x + n′2

y
0

−
n′

zn
′
x(

n′2
x + n′2

y + n′2
z

) 3
2

−
n′

zn
′
y(

n′2
x + n′2

y + n′2
z

) 3
2

∣∣n′
∣∣2

− n′2
z(

n′2
x + n′2

y + n′2
z

) 3
2

−Px −Py −Pz


︸ ︷︷ ︸

∂ygp
∂n′

− R[n]×︸ ︷︷ ︸
∂n′

∂R

(22)
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TABLE IV
LIO RESULTS COMPARISON ON THE ECMD DATASET

Fig. 4. Autonomous driving suite used in the UrbanNav and the ECMD
dataset, including a Velodyne HDL-32E LiDAR sensor and an Xsens
MTI-30 IMU.

IV. EXPERIMENTAL EVALUATION

Our experimental results are designed to support our claims
that our method.

1) Achieving state-of-the-art performance in real-world
urban autonomous driving environments, especially for
the long-term journey trajectory and demonstrating good
generalization across different scenarios.

2) Successfully reducing the impact of mismatches on
the accuracy of LiDAR odometry through aware
uncertainties.

3) Effectively suppressing the Z -axis drift issue and ensur-
ing long-term operability by adjusting the uncertainty
corresponding to the optimized pose.

The experimental results in this article well support these
viewpoints.

A. Datasets and Experimental Setups

To comprehensively evaluate our method, we conducted
extensive tests using public datasets, self-collected datasets,
and simulation datasets. For the public datasets, we tested our
algorithm on the UrbanNav [34] and ECMD [35] datasets,
both of which were collected in Hong Kong at different times
using the same autonomous driving suite. As shown in Fig. 4,
this suite includes a LiDAR sensor (Velodyne-32) and an
IMU (MTI-300). As mentioned earlier, these datasets contain
a significant number of dynamic objects, reflecting common
scenarios in autonomous driving, which pose substantial chal-
lenges to the LIO algorithm. However, the difficulty of each
dataset varies: the ECMD dataset contains a large number of
pedestrians, and since it is currently impossible to completely
eliminate dynamic objects through deep learning, this dataset
effectively tests our algorithm’s robustness against mismatches
caused by dynamic objects. On the other hand, the UrbanNav
dataset, with numerous dynamic vehicles and driving distances

Fig. 5. Platform we used in the campus environment.

exceeding 3 km, allows us to validate the robustness of our
algorithm over long distances. Ground truths for all these
datasets were generated using high-precision inertial naviga-
tion devices integrated with GPS positioning.

To validate the generalization capability of our algorithm
and its performance in real-world scenarios, we conducted data
collection and algorithm testing using a self-collected dataset
on the campus of Shanghai Jiao Tong University, as shown
in Fig. 5. We collected low dynamic, medium dynamic, and
high dynamic sequences based on the varying pedestrian
traffic at different times on campus. The final test results
demonstrate that our algorithm performs exceptionally well in
real-world road environments, exhibiting strong generalization
capabilities.

In the following experiments, we will compare our proposed
method with various open-sourced LiDAR-inertial systems.
Considering that our proposed LIO core module primarily
consists of point-to-point constraints and the covariance esti-
mation, we will compare it with similar algorithms such
as Point-LIO [36], VoxelMap++ [29], and PV-LIO [37].
Point-LIO is based on the point-to-point constraint, while
VoxelMap++ and PV-LIO also consider covariance to
enhance localization quality. In addition, we will compare it
with the classical methods, particularly for long-term jour-
neys, like Direct LiDAR Odometry [28], a loosely coupled
LiDAR-inertial algorithm; FAST-LIO2 [11], a tightly coupled
IESKF-based sensor fusion algorithm and its more efficient
variant [16]; and LIO-SAM [12], an optimization-based LIO
algorithm. For all comparative algorithms, we adjusted the
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TABLE V
LIO RESULTS COMPARISON ON THE REAL-WORLD ENVIRONMENTS

TABLE VI
LIO RESULTS COMPARISON ON THE URBANNAV DATASET

extrinsic parameters between the LiDAR and IMU and the
intrinsic parameters of the IMU for different datasets, setting
them as outlined in Tables I–III, while maintaining the other
parameters at their default values. The experimental results
presented in Tables IV–VI demonstrate the state-of-the-art
performance of our algorithm.

We follow these methods to use the absolute trajectory error
(APE) to evaluate the algorithms’ performance. We selected
four metrics, RMSE, MEAN, MAX, and STD, to evaluate
the algorithms, and utilized the open-sourced tool evo [38]
for computation. We run all the algorithms on an Intel i9
13900KF@3.0 GHZ with 32 cores with 32-GB RAM and an
Nvidia RTX 4090 with 24-GB RAM.

B. LIO Performance

In the first experiment, we show the comparison of
LIO performance between our proposed method with other
LIO methods on the ECMD dataset [34] and UrbanNav
dataset [34], which supports that our proposed method
achieves the state-of-the-art LIO performance and generalizes
well to different environments.

1) ECMD Dataset: For the ECMD dataset, we show the
LIO results on three sequences in Table IV. The trajectories
in the Dense street part, while not long, contain numerous
dynamic objects, representing the primary challenge faced by
LIO algorithms in urban bustling scenarios. Based on the

number of dynamic objects, we selected three sequences from
the dataset: Dense street night easy e, Dense street day medium
circle a, and Dense street day difficult. These were used to
test our algorithm and are simplified to easy, medium, and
difficult in the following. Since the dataset involves bumpy
road conditions, which cause rapid variations in ground infor-
mation that contradict the flat terrain assumption presented in
Section III-D, we have frozen the ground optimization module
in this case.

As shown in Table IV, the RMSE values indicate that
our algorithm performs the best in all sequences and the
STD values indicate that our algorithm is more robust
than other algorithms. Although the MAX value of our
algorithm performance on the difficult sequence is slightly
inferior to other algorithms, considering that this metric
is primarily used to evaluate the algorithm performance
in the worst case scenario and its stability, our result is
only slightly lower than the optimal algorithm, indicating
that our algorithm remains stable even in extreme situations
without crashing. Fig. 6 provides a more intuitive display
that our algorithm is better than others. This robustness
is primarily attributed to the uncertainty-aware distribution-
to-distribution update module, which effectively handles
challenging urban scenarios with dynamic objects and frequent
mismatches.

2) UrbanNav Dataset: We also provide the quantita-
tive analysis of LIO performance for different algorithms

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on March 22,2025 at 02:39:35 UTC from IEEE Xplore.  Restrictions apply. 



8502912 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 74, 2025

Fig. 6. xy-trajectory qualitative results of the top three ranked LIO algorithms on ECMD datasets.

Fig. 7. xy-trajectory qualitative results of the top three ranked LIO algorithms on the UrbanNav datasets.

in Table VI. The UN-hk-medium sequence covers a typical
urban canyon of Hong Kong. Its involves high-rise build-
ings, numerous dynamic objects, which is a challenge to the
LiDAR sensors. The UN-hk-deep sequence was collected in
a narrow street with numerous moving objects while fewer
static landmarks. To better visualize and understand the results,
we show the xy-trajectory results in Fig. 7 and z-trajectory
results in Figs. 8 and 9. As can be seen in Fig. 7, our
method generates accurate trajectories consistently in all four
sequences. Especially in the UrbanNav hk-meidum sequence,
the odometry trajectory estimated by our approach is very
close to ground truths even when other methods fail due to the
moving objects. The z-trajectory results in Figs. 8 and 9 shows
that benefiting from the devised ground-plane optimization,
our method has much less error in the z-axis compared to
other methods.

3) Real World Dataset: As shown in Table V, we conducted
data collection in real road environments on the campus of

Shanghai Jiao Tong University. Unlike the 32-line LiDAR
sensor used in previous public datasets, we employed a 16-line
LiDAR sensor and categorized the collected sequences into
low-traffic, medium-traffic, and high-traffic sequences based
on the number of dynamic objects. The experimental results
demonstrate that our algorithm exhibits strong generalization
capabilities and performs excellently across various real-world
scenarios.

C. Ablation Study

In this section, we primarily discuss the impact of different
modules on the performance of the algorithm. Specifically,
we analyze the uncertainty-awared module in the odometry
estimation module and the importance of the covariance
adjustment after the ground plane optimization during long-
term tracking. The prior module is to effectively reduce
trajectory drift caused by mismatches, while the latter ensures
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Fig. 8. Results of xyz-axis in the UrbanNav medium sequence.

Fig. 9. Results of xyz-axis in the UrbanNav deep sequence.

the stability of the algorithm during long-distance operations.
To validate these points, we used various datasets. To disable
the uncertainty-aware module, we set ξiξiξi in (11) to an identity
matrix, indicating that all matches contribute equally to the
IMU bias update. For validating the covariance adjustment
module, we referenced the loosely coupled approach com-
monly used in integrated navigation, scaling the covariance
at the pose correspondences by a factor of ten, either increas-
ing or decreasing it, represented as Ground† and Ground∗,
respectively.

To evaluate the impact of different modules on the
algorithm’s performance, we conducted a comprehensive abla-
tion study. The proposed algorithm is designated as UA-LIO.
To facilitate the ablation study, we define specific variants:

TABLE VII
ABLATION STUDY ON THE PROPOSED MODULES

UA-LIO∗ represents the algorithm incorporating only the
covariance estimation module, UA-LIO† denotes the version
including only the ground constraint module, and UA-LIO#

refers to the configuration where both modules are excluded.
We had the vehicle follow the exact same trajectory in both
purely static and dynamic scenarios. The presence of dynamic
objects increases the likelihood of mismatches, which further
highlights the advantages of our module. To achieve this, we
conducted simulation-based tests using the AirSim simulator,
as depicted in Fig. 10, which allowed the vehicle to navigate
through the same urban area under both conditions. The
noise parameters of the IMU in the simulation are shown
in Table III. As shown in Fig. 11, the test results indicate
that even in purely static scenarios, the comparison algorithm
FASTLIO2 still exhibits significant drift. This supports the
point we claimed in Section I: mismatches are not caused only
by dynamic objects. The inherent limitation of LiDAR point,
capturing only positional information without texture details,
also leads to mismatches. The uncertainty-aware distribution-
to-distribution update module, however, can effectively reduce
the impact of such mismatches.

Table VII demonstrates that both the uncertainty-aware
distribution-to-distribution update module and ground con-
straints significantly improve the odometry accuracy of the
LIO algorithm in urban scenarios. However, in the absence
of uncertainty considerations, the inclusion of the ground
constraint module results in inferior performance compared
to its exclusion. This phenomenon can be attributed to the
dependency of ground constraints on the accuracy of the initial
pose estimation. Without the incorporation of uncertainty
information, estimated poses lack sufficient precision, thereby
undermining the effectiveness of the ground constraint module
and leading to suboptimal outcomes.

D. Runtime Results

In this section, we demonstrate that our algorithm is capable
of real-time operation. The average processing time is obtained
by measuring the execution time across multiple trials on
real environment datasets to ensure robustness and accuracy
in our performance evaluation. The most time-consuming
components of our method are the ground normal estimation
module, the covariance estimation module, and the update
module, while the propagation step requires only 2 ms. For the
covariance estimation module, we leverage OpenMP for paral-
lel processing, reducing the computation time to approximately
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Fig. 10. Simulated scenarios created in AirSim with added dynamic vehicles.

Fig. 11. Comparison of APE in simulated environments. (a) Simulated static environment. (b) Simulated dynamic environment.

2 ms per scan. The ground estimation module takes around
7 ms per scan. The distribution-to-distribution update module
averages 45 ms per scan. As a result, the total average
processing time of our algorithm is 56 ms, which is faster
than the frame rate of the LiDAR sensor, ensuring real-time
performance.

V. CONCLUSION

In this article, we presented a novel uncertainty-aware LIO
method for autonomous driving in urban environments. Our
method leverages the proposed odometry combined with our
uncertainty estimation module to filter out mismatched fea-
tures and utilize ground plane information, thereby enhancing
LIO performance. We evaluated our approach across various
datasets and compared it with other existing methods. The
experimental results suggest that our algorithm achieves state-
of-the-art performance in terms of odometry accuracy and
generalizes well across different urban environments.

In the future, we will explore more robust LiDAR odometry
estimation algorithms and work toward developing a more
universal ground model to handle variations in ground infor-
mation, thereby enabling the application of ground constraints
under changing terrain conditions.
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