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Abstract
Small object detection techniques have been developed for decades, but one of key remaining open challenges is detecting
tiny objects in wild or nature scenes. While recent works on deep learning techniques have shown a promising potential
direction on common object detection in the wild, their accuracy and robustness on tiny object detection in the wild are still
unsatisfactory. In this paper, we target at studying the problem of tiny pest detection in the wild and propose a new effective
deep learning approach. It builds up a global activated feature pyramid network on convolutional neural network backbone for
detecting tiny pests across a large range of scales over both positions and pyramid levels. The network enables retrieving the
depth and spatial intension information over different levels in the feature pyramid. It makes variance or changes of spatial or
depth-sensitive features in tiny pest images more visible. Besides, a hard example enhancement strategy is also proposed to
implement fast and efficient training in this approach. The approach is evaluated on our newly built large-scale wide tiny pest
dataset containing 27.8K images with 145.6K manually labelled pest objects. The results show that our approach perform
well on pest detection with over 71% mAP, which outweighs other state-of-the-art object detection methods.
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1 Introduction

Due to the success of deep learning techniques, the study of
general object detection has beenwell developed in computer
vision community, where it also brings benefits to many sub-
sequent small object detection applications, like detection
of tiny face [1], traffic light [2], pedestrians [3], insects [4],
tomato fruit [5], etc. But comparingwith normal object detec-
tion, tiny object detection remains an open problem due to a
challenging fact thatmany discriminative details and features
of tiny object are small, blurred, hidden and short of suffi-
cient details. These pose a fundamental dilemma that it is hard
to distinguish small object from generic clutter in the back-
ground. The diversity and complexity of scenes in the wild
cause a variety of variation or noisy factors to increase the
difficulty of applying typical generic object detection tech-
niques. Taking the example of pest detection in the wild,
detection accuracy of tiny pests is impacted by many factors
like lighting illumination, location of pests and distribution
of pests as shown in Fig. 1. In this paper, we target at studying
tiny pest detection in the wild and explore an efficient deep
learning-based solution towards this problem.
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Recently, deep learning techniques have brought signifi-
cant progress in various image processing based tasks espe-
cially on 2D object detection, in which numerous researches
attract attention in computer vision community such as SSD
[6], Faster R-CNN [7], feature pyramid network (FPN) [8]
and other extended variants of these approaches [9–11].
Among these novel methods, Faster R-CNN proves to be
a powerful alternative in object detection task comparing
with the other one-shot CNN approaches, which shows great
success in PASCAL VOC [12] and Microsoft COCO [13]
object detection challenges. This might be contributed by
the coarse-to-fine learning strategy in Faster R-CNN as well
as its variants that adopt region-of-interest (RoI) pooling
to focus on local regions of input images. But targeting
at small object detection, feature pyramid structure [8] has
become an increasingly popular module deployed in Faster
R-CNN architecture, which achieve a superior performance
on detecting objects with small sizes by two novel designs:
multi-scale feature maps and top-down connection between
neighbour levels. The former enables the model to detect
specific-scale objects on corresponding feature level and the
latter promotes the integration of contextual information.
Therefore, for small object detection in deep learning area,
the recently emerging works usually choose FPN as feature
extraction network [14,15].

However, due to the applicable gap between generic object
detection and real-world intelligent agriculture tasks, despite
there are some works proposed on dealing with plant rele-
vant issues [16,17], these deep learning approaches are often
intractable for practical pestmonitoring systems. The reasons
come from many in-field difficulties that brings unsatisfied
performance on current computer vision techniques: (1)Wild
environment might increase difficulty in feature extraction
where the visual information is unavoidably confused with
the clutter background. (2) The model might not be sensitive
to recognizing the categories of detected tiny pests due to
the limited inter-class distance in feature space. (3) Some of
pest species usually tend to gather into clique in agricultural
crops so the density distribution makes the model insensitive
to parse the gathered tiny pests in images.

For overcoming above obstacles, we attempt to propose
a new effective deep learning approach with parallel atten-
tionmechanism in feature pyramid network towards tiny pest
detection in the wild. The motivation of our idea is to first
build up a feature pyramid structure on CNN backbone, and
then propose a global activated module (GAM) for retrieving
depth and spatial attention over different levels in the pyramid
network. The extracted depth and spatial attention informa-
tion will generate weights to re-balance the feature pyramid
network. Differing with existing work [18,19] in adoption
of serial mode attention mechanism in object detection, we
design our GAM in a parallel mode so that it could extract
channel and position attention avoiding their mutual influ-

Fig. 1 The problem of tiny pest detection in the wild scene is affected
by many factors, a Dense or clustered distribution of pests. b Sparse
distribution of pests. c Influence of sunlight illumination. dBackground
noise

ence to each other. Also compared to Faster R-CNN, the
adjusted network will enable variance or changes of spatial
or depth-sensitive features in imagesmore visible in the pool-
ing layers. This property will allow some missing features of
tiny pests in pooling layers in one level to be re-detected by
many pyramid levels. It will help deal with some obstacles
of tiny pest detection in the wild, like overlapping, different
density distribution and tiny size.

Following this idea, we present a two-stage Global
activated feature pyramid network (GaFPN)-based CNN
approach towards tiny pest detection in the wild as shown
in Fig. 2. In the first stage, the feature pyramid structure is
built on CNN backbone for multi-scale feature extraction;
a GAM is designed to extract and fuse depth and spatial
activation information from feature pyramid. In the second
stage, a region proposal network (RPN) is applied for provid-
ing region proposals and fully connected layers, which are
adopted for pest classification and position regression. Dur-
ing the training phase, a hard example enhancement (HEE)
strategy is proposed into our method for implementing effi-
cient training that mines hard examples for fast gradient
descent. We build CNN backbone with more layers in shal-
low blocks and fewer layers in deep blocks aiming to mine
more valuable semantic information while maintaining suf-
ficient object information for localization. The feature maps
outputted from shallowblocks participatemore in boxes fine-
tuning. The approach is evaluated over our newly published
large-scale pest detection specific image dataset contain-
ing 27.8K raw images with 145.6K manually labelled pest
objects. The image data were collected in the wild field using
mobile camera over 7 years. The experimental results show
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Fig. 2 a Faster R-CNN using single feature map, which is suitable for
common object detection in wild but not well on tiny object detection.
b FPN building a feature pyramid with multi-scale levels, which can
observe some missing information over small tiny objects in single fea-
ture map. c Our approach augmenting global activated module (GAM)
for extracting and fusing depth and spatial activation in feature pyramid
network, which allows this network sensitive to variations or changes
of depth and spatial features of tiny objects in the images

that our approach achieves over mAP of 71%, which out-
weighs other state-of-the-art methods.

The major contributions of this paper are as follows:

– A novel Global activated module (GAM) is proposed in
feature pyramid network for tiny object detection task.
It can help recognize and extract discriminative features
of tiny objects, then accommodate large variations and
changes of distribution of tiny objects over images.

– A two-stage CNN-based solution by integrating the
GaFPN method is presented towards tiny pest detection
in the wild. It is feasible to deal with pest images from
the wide environment with good accuracy and efficiency.

– A comprehensive and in-depth experimental evaluation
on practical industry level large-scale wild tiny pest
dataset (7 years over 27k images) is provided for veri-
fying the proposed approach. The results show that our
approach delivers an average 71% accuracy over 6 types
of pest detections, which outweighs the state-of-the art
approaches.

– A domain-specific dataset containing more than 27K
images and 145K annotated pests is built up and pub-
licly available. The pest image dataset produces an initial
state-of-the-art benchmark for further deep study and
evaluation. We believe these advances will facilitate
future research and applications in tiny object detection
in the wild.

2 Related work

Classic Object Detection Prior arts in general object detec-
tion in the wild usually copy with object deformation [20].

These approaches are based on extracting discriminative and
efficient features for general object detection, likeAdaboost’s
face detector [21], histogram of oriented gradients (HOG)
[22] or covariance features [23] for pedestrian detection.
Additionally, the deformable part model (DPM) [24] has
been proposed by accelerating coarse-to-fine search of pos-
sible locations. The object recognition methods like spatial
pyramid matching (SPM) [25,26] are presented to detect
objects with large deformations. These approaches are capa-
ble of handling roughly rigid objects, but not good in
detecting tiny object instance with less deformable shapes.
Towards tiny object detection, many hand-engineered fea-
tures such as colour [27], shape [28], texture [29] and
high-level features like SIFT [30] arewidely used. But select-
ing feasible features is laborious and insufficient to represent
all aspects of the targeted tiny objects. In this work, we aim to
solve the feasible feature selection for tiny object detection
by an automatic way.

Deep Learning for Object Detection The emergence of
deep learning-based computer vision approaches become
to be of great benefit to modern image classification and
object detection tasks. Neural network proves to own the
superior capacities on extracting powerful enough feature
representation for 2D static images. Besides, CNN-based
object detectors are also robust to learn invariant descriptors
for various object categories [31]. For example, two-stage
approaches [7,8] utilize dense sliding window on extracted
feature maps from input image to search the potential object
regions with low-level cues and then focus on these local
regions for correct identification. During this region pro-
posal process, proper criterion (also known as loss function)
would also guide the CNN backbone to pay more attention
on the object areas. During this region proposal process,
proper criterion (also known as loss function) would also
guide the CNN backbone to pay more attention on the
object areas. Therefore, the end-to-end training strategy
could bring automatic object detection capability [32]. On
the other hand, considering objects with various sizes, SSD
[6] and DSSD [33] perform to find instances at multilayers.
In order to improve the detection accuracy, RetinaNet [34]
introduces a novel loss function named focal loss to allevi-
ate the imbalance risk of background–foreground samples.
Besides, feature pyramid structure is also employed in Reti-
naNet to consider both large-scale and small-scale objects.
Although these methods have shown great accuracy beyond
what were achieved by traditional signal processing meth-
ods, they might be intractable for our targeted wild pest
detection task due to some inherent difficulties in in-field
environment in agriculture applications. Therefore, current
object detectors require task-specific improvement for prac-
tical pest monitoring applications.
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Tiny Object Detection Generally, there are two types of
approaches in addressing tiny object detection task when
employing deep learning techniques. The first one is that
building novel tiny object specific modules into Faster R-
CNN style architectures. These methods improve the general
object detection models into tiny object detection task and
make it work well. Gao et al. attempt to explore more effec-
tive methods on faster R-CNN and obtain 71.53 score onMS
COCO tiny AP [35]. Gong et al. propose a novel concept
named fusion factor to control information from the various
layers in feature pyramid [36]. The other one is using coarse-
to-fine strategy that first search the object cluster regions,
then crop the clusters from the original image and detect
tiny objects [37–40]. For tiny pest detection, Li et al. pro-
pose a tiny object detector that jointly connects two general
detection models [41]. Besides, Du et al. present a novel
cluster region proposal network and a density merging and
partitionmodule for a precise cluster finding. Comparedwith
coarse-to-fine architectures, faster R-CNN style models train
the object detection model by an end-to-end manner that
can save a large amount of time consumption. On the other
hand, coarse-to-finemethods usuallyworkwell on the scenes
where tiny objects gather into group but not perform better
on sparse object environment. Therefore, in this work, we
follow the faster R-CNN style object detection architectures
to present our method.

3 Materials andmethods

3.1 Approach overview

We give a brief description on the proposed CNN-based deep
learning architecture as shown in Fig. 3. In the first stage, it
relies on the traditional CNN backbone, where our proposed
newmodule GAM is aggregated on each convolutional block
for screening and activating depth and spatial information
from feature maps outputted by each block. The multi-scale
image features extracted from GAM are used to rebuild the
feature maps. This design has two considerations: (1) Suffi-
cient shallow layers enable mining more valuable semantic
features for classification. (2) The bottom layers with high
spatial information are fully utilized for avoiding some fea-
tures vanish in deep block.

In the second stage, similar to Fast R-CNN, we use
RPN module connecting to each level so that regions were
extracted in different spatial scales. Considering that most
pests are tiny objects in the wild images and their distribu-
tions might be dense or sparse, smaller and denser anchors
as well as high initial image resolution are significant for
accurate pest localization. Thus, fully connected layers for
classification and box regression are capable of allowing the
pest regions being discriminated. Finally, HEE strategy is
presented to help our method for fast and efficient training.

3.2 Global activatedmodule (GAM)

The inspiration of GAM is under two key observations from
sample tiny pest data. The first observation is that the pest is
usually very tiny object with a size less 1% of whole images.
In that case, through a deep learning architecture, they will
become even smaller and insensitive with each pooling layer.
Thus,we have to build up featuremaps fromCNN layerswith
lots of convolution kernels, in which each kernel is designed
to extract the corresponding type of feature. As we know, the
feature information of tiny pest might vanish in deeper CNN
layers and convolutional operation own a defect of limited
receptive field. From a feature pyramid perceptive, these fea-
ture maps from extracting these depth values, it is possible
to detect some tiny objects with discriminated features.

The second observation from sample pest data is that there
are large amount of variation of pest distribution and sizes
in the image dataset. These factors can be categorized as a
dimension of ‘spatial’. Eventually, different kernel aims to
detect different shapes of objects. Ideally, pests from the same
category have shown the similar shapes in images because of
tiny character, which are different from generic objects that
being represented with great posture differences. Thus, by
extracting the value of this spatial information, it is possible
to reduce the influence of variation of pest distribution and
sizes in training process. Motivated by these two observa-
tions, we propose a novel module global activated module
(GAM) for activating the depth and spatial information after
each output from CNN block to boost the representational
power of feature maps. Figure 4 shows an intuitive frame-
work of our GAM in the backbone.

The GAM consists of two parts. In the first part of depth
activation module (the upper part), the 3D feature map with

Fig. 3 The proposed
architecture for tiny pest
detection in the wild

Input image Output
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Backbone RPN

Classification

Regression

HEE
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extracted by CNN block is input into an extra global pooling
layer which takes average from the whole feature maps in
each channel to generate a lower-dimensional (1D) feature
with shape of 1 × 1 × C , in which the averaged value rep-
resents the global feature for every channel. Then, we apply
two groups of convolutional layers with nonlinear activation
ReLU following. The 1D feature vector is mapped into (0,1)
area by adopting Sigmoid function so the output with shape
of 1 × 1 × C is named as depth activation factors. The out-
put of depth activation module is the broadcast element-wise
product of the original input 3D featuremap and the 1Ddepth
activation factors. Finally, feature map is activated in depth
level and the potential tiny object can be effectively detected
in these activated channels.

The lower part in Fig. 4 is spatial activationmodule,whose
operations are similar with depth activation module. Specif-
ically, the spatial activation branch is a segmentation-like
branch, in which the supervised mask is obtained by fulfill-
ing1 into the ground truth positions and0 into the background
areas. In this part, the input 3D feature map (W × H × C)
is processed by an extra ‘global convolution’ operation con-
taining a convolutional layer kernel with only 1 filter. The
output is a 2D feature map with shape of (W × H × 1),
which could ensure the spatial activation vector is learned in
spatial level by a supervised auxiliary loss. The spatial acti-
vation factors are generated through two convolutional layers
with a nonlinear activation ReLU and Sigmoid function. At
last, the learned spatial activation factor is fed into exponen-
tial operation and then dot with the input 3D feature maps in
each position rather than naïve multiplication. In this way, it
could maintain more context information while highlight the
object information. In this way, our spatial activation could
enhance the feature maps in pest objects area and diminish
the opposition. Finally, the output of GAM is the sum of two
activated feature maps, and the feature pyramid will be built
upon the output of GAM.

3.3 Loss function

Loss function is the criterion for training process in deep
learning approaches. Our loss function is defined as the sum
of the cross-entropy loss and the box regression loss:

L(s, t) =
∑

i

l(s, t)

=
∑

i

− log(sc∗
i
) + λ[c∗

i > 0]smoothL1(ti − t∗i )

(1)

where sc∗
i
denotes the predicted score class c∗

i while ti and t
∗
i

denote {tx , ty, tw, th} of bounding boxes. λ[c∗
i > 0] indicates

thatwe only consider the boxes of non-background (if c∗
i = 0

the box is background). This loss function is the sum of the
classification loss and the box regression loss.

3.4 Hard example enhancement (HEE)

Considering that our targeted pest dataset is large-scale and
contains multiple species of insect, it is necessary to design
a strategy for speeding up the training process in the deep
learning architecture. Motivated by the idea of online hard
example mining (OHEM) [42], we design a hard example
enhancement strategy (HEE) for mining hard examples of
current mini-batch during the training. Usually there is only
one image in each mini-batch, the role of HEE is to enhance
the weights of hard examples during training for quickly
reaching convergence and saving the iteration numbers.

In the HEE strategy, we proposed a modulating factor α

to strengthen the neural network to fit more on hard exam-
ples. The loss function is reshaped to up-weight these hard
examples:

L∗(s, t) = αL(s, t) = α
∑

i

l(s, t) (2)

Fig. 4 Illustration of global
activated module (GAM)
structure. For each feature level
from standard FPN, we build
two parallel branches to extract
different types of activation
information separately. The
depth activation vector is trained
by unsupervised learning while
the spatial activation matrix is
trained by an auxiliary loss.
Final feature map is the sum of
these two branches’ outputs
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in which αi denotes the weighting factor of the i th example
in the last training epoch:

αi
(p) = 1 + l(p−1)(s, t)

1
N L(p−1)(s, t)

(3)

where superscripts p and p − 1 represent the pth and
p − 1th training epoch. Intuitively, the weighting factor αi

enhances the loss contribution fromhard examples andweak-
ens it from easy ones. This factor will help our method fast
and efficient convergence. The second stage of HEE is to
reduce the number of training iterations for easy examples.
During training, easy examples are learned well by network
at early epoch so the loss would be close to 0 at the next few
epochs. In this case, the network learns only few things since
the gradient is becoming to almost a value of 0, in which
results in wasteful learning. In order to remove these easy
examples epoch by epoch, we first perform a warm training
phase on a small part of training set so that our network is
feasible to the new task. In the p − 1th training epoch, we
compute the losses of all the N training examples and remove
the 10% of those with the smallest losses and the network
is trained based on the rest examples. After 5 epochs, the
amount of training samples is 0.5N that is only half of the
original training set. Thus, we restart training with the origi-
nal examples again to guarantee that our network is still able
to fit the easy samples. In this case, the examples with small
losses and gradients are deleted to save computation cost.
Combined with the modulating factor α in loss function, the
hard examples are better fully learned with less training time.
It makes our model more fit more to large-scale dataset.

4 Dataset set-up of tiny pest in the wild

To our best knowledge, while there exist some open insect
databases released such as IP102 [43], no existing large-scale
datasets that cover multi-class pests in the wild or nature
environments are released for study yet. Thus, we attempt to
establish a research-based large-scale dataset for tiny insect
detection in the wild.

Our dataset is built up from our previous industrial-
oriented projects over 7 years containing 27,905 images with
145,672 manual labelled pests in 6 classes. The images are
captured in wheat and rice field. For image acquisition, we
use CCD camera with 4 mm focal length with an aperture of
f/3.3 to make sure that the captured images are high resolu-
tion (1440 × 1080).

Then the images are annotated with several labels as well
as bounding boxes by agricultural experts to guarantee the
professionalism of these annotations. The statistical details
of our dataset are shown inTable 1.Note that the sizes of pests
would not be at most 1.5% at the whole image because we

aim to detect tiny pest. Moreover, to investigate the environ-
mental impact factors, we first manually split the validation
subset into 4 typical challenges including dense distribution,
sparse distribution, sunlight illumination influence and large
background noise, as shown in Table 2. Some typical samples
of our dataset are shown in Fig. 5.

5 Experimental results and discussion

5.1 Experiment set-up

On our dataset, we build some experiments to evaluate the
performance of our approach. We compare the performance
of our method with two types of object detection methods:
generic detection methods and tiny object detection meth-
ods. The generic detection methods we choose are Faster
R-CNN [7], RetinaNet [34], Yolov3 [11] and FCOS [44],
which are representative works for two-stage detector, one-
state detector, high-speed detector and anchor-free detector,
respectively. The tiny object detection methods are ClusDet
[39], DMNet [40]. DCTDet [45] and Li et al.’s method [41],
in which ClusDet and DMNet are designed for tiny objects
while DCTDet and Li et al’s method focus on tiny pest detec-
tion in agriculture. All convolutions in CNN architectures
are performed in a unit consisting of convolution layer, batch
normalization [46] and ReLU. Besides, we double the depth
of shallow layers and halve those in deep layers to ensure
the extraction of sufficient semantic information before the
position information disappears. In the second stage, RPN
architecture is referenced by Faster R-CNN and we set the
half of original anchor size because pests to be detected are
tiny objects so most of our region proposals are provided
by RPN in shallow blocks. We implemented our codes on
PyTorch framework and run on two GeForce GTX TITANX
GPUs. The momentum SGD [47] is chosen as our optimizer
with momentum 0.9 and mini-batch size is 2. As to learning
rate policy, ‘step’ strategy is applied in gradient descent, in
which we initialize learning rate to 0.001 and the learning
rate will be divided by 10 per 1 epoch.

In terms of model evaluation, Precision, Recall and Aver-
age Precision (AP) [12] are three major evaluation metrics
for this pest detection task. Specifically, given the IoU (Inter-
section over Union) threshold, we could decide the detected
bounding box is correct or not. Based on the judgement, the
Precision and Recall for the input image are defined as:

Precision = #TP

#TP + #FP
(4)

Recall = #TP

#TP + #FN
(5)
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Table 1 Statistics on two
subsets of our dataset with
training subset and validation
subset

Pest name size (%) Training Validation All

#images #objects #images #objects #images #objects

WM 0.089 11,505 54,423 1278 6095 12,783 60,518

SA 0.086 5230 26,385 588 2844 5818 29,229

SG 0.075 5997 34,262 656 3819 6653 38,081

RP 0.100 697 1634 72 133 769 1767

SW 1.512 2901 2980 303 320 3,204 3300

RPH 0.148 1084 11,352 121 1425 1205 12,777

Total 25,114 131,036 2791 14,636 27,905 145,672

For each class, the number of images (containing at least one insect the class), the number of objects is shown
in this table. Note that because single image may contain objects of several classes, the totals shown in the
‘#images’ columns are not simply the sum of the corresponding columns. (WM: Wheat mite, SA: Sitobion
avenae, SG: Schizaphis graminum, RP: Rhopalosiphum padi, SW: Sticky worm, RPH: Rice planthopper)

Table 2 Statistic on validation
subset of our dataset split in 4
typical challenges

Pest name Dense Sparse Sunlight Noise

#images #objects #images #objects #images #objects #images #objects

WM 178 1745 1064 4205 214 760 56 324

SA 236 2036 241 632 211 935 31 121

SG 210 2296 310 1199 209 1014 69 700

RP 17 46 55 87 25 49 15 27

SW – – – – 105 109 236 253

RPH 34 694 53 548 5 34 119 1396

Total 583 694 1627 548 708 2901 499 2821

Note that single image may contain more than one type of challenges, the totals shown in the ‘#images’
columns are not simply the sum of the corresponding columns. Besides, the pest SW of class #5 is not
concerned to distribution challenges both dense and sparse since most of their images contain only 1 pest

Table 3 Multiclass tiny pest detection results comparison

Method Backbone Pest name
WM SA SG RP SW RPH mean s/img(GPU)

Generic detection methods

Faster R-CNN [7] ResNet50 61.63 51.26 53.38 74.74 89.89 66.18 66.18 0.039

Faster R-CNN [7] ResNet50+FPN 63.20 57.11 58.16 79.59 90.10 66.22 69.06 0.065

RetinaNet [34] ResNet50+FPN 57.61 51.85 51.89 75.65 88.72 63.52 64.87 0.053

Yolov3 [11] DartkNet53 57.58 50.95 51.47 74.89 89.01 64.38 64.71 0.024

FCOS [44] ResNet50+FPN 61.89 52.33 54.08 76.98 90.07 68.35 67.28 0.048

Tiny object detection methods

ClusDet [39] ResNet50+FPN 63.98 58.62 58.96 83.20 90.12 68.37 70.54 0.218

DMNet [40] ResNet50+FPN 65.46 60.25 61.24 85.10 90.12 69.85 72.00 0.268

DCTDet [45] ResNet50+FPN 66.38 61.14 61.56 85.08 90.10 70.49 72.44 0.289

Li et al. [41] ResNet50+FPN+DarkNet53 68.06 63.98 63.87 86.47 90.07 72.48 74.16 0.396

Our method

Ours Inception+GAM 60.01 58.71 54.29 76.84 88.18 60.87 66.48 0.037

Ours Inception+GaFPN 61.50 60.14 57.15 79.35 88.53 63.06 68.29 0.054

Ours ResNet50+GAM 63.96 61.51 57.86 85.14 90.07 68.17 71.07 0.041

Ours ResNet50+GaFPN 64.75 61.87 59.30 85.34 90.07 69.60 71.82 0.069

The AP is computed over IoU 0.5
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Fig. 5 Typical samples in our dataset

where the #TP, #FP and #FN indicate the number of true
positives, false positives and false negatives. Therefore, Pre-
cision measures the detection accuracy of the input pest
images while a higher Recall points out lower misdetections.
In addition to IoU threshold, we can also obtain various cou-
ples of Precision and Recall by selecting different confident
threshold during pest detection. In this way, Precision–Recall
curve could be defined with these sequential Precision and
Recall sets, in which we introduce AP as a high-level evalu-
ation metric for our pest detection task that is defined as the
integration of Precision–Recall curve:

AP =
∫ 1

0
PrecisiondRecall (6)

Finally, we average the AP values in all the pest categories
K to obtain mean AP (mAP) as the evaluation metric for the
whole dataset in our work:

mAP = 1

K

∑K

c=1
AP(c) (7)

5.2 Wild tiny pest detection results

Table 3 presents the final wild multiclass tiny pest detection
results. We compare our method with two types of object
detection approaches. The first one is generic detectionmeth-
ods. Table 3 shows that our method with the proposed GAM
module and HEE training strategy can achieve much higher
mAP than the current generic detectionmodels, which obtain
5.64, 2.76, 6.95, 7.11, 4.54 improvement compared to the
baselines. This is because object features of tiny pest become
vanishing in deep layers so that it is hard for Faster R-CNN
to find them. Among all of the approaches, the best detection
performance occurs in our method using ResNet50 as back-
bone which achieves mAP with 71.82%. The second one is

Curve for Class 1.jpg

(a) PR Curve for pest WM

Curve for Class 2.jpg

(b) PR Curve for pest SA

Curve for Class 3.jpg

(c) PR Curve for pest SG

Curve for Class 4.jpg

(d) PR Curve for pest RP
Curve for Class 5.jpg

(e) PR Curve for pest SW

Curve for Class 6.jpg

(f) PR Curve for pest RPH

Fig. 6 Precision-recall curve for classes with our method compared
with other state-of-the-art methods with different CNN backbones

tiny object detection methods. As it can be seen, coarse-to-
fine style approaches seem to be more suitable for tiny pest
detection task, with 70.54, 72.00, 72.44 and 74.16 mAP per-
formance. However, although our method might be slightly
worse than these methods, we can obtain much higher infer-
ence speed compared with them. In detail, our method can
spend only 0.069 seconds for one image. Overall, ourmethod
perform better than the other object detection approaches.

There is an obvious difference with performance over dif-
ferent types of pests. Specifically, pest SW owns the most
obvious feature that all the models could discriminate and
localize it well while SA and SG are two difficult species
to detect with lower AP. This might be explained by that
pest SW holds the largest size in images (1.51%) compared
to other pests whose sizes are much smaller (less than 1%),
which improves difficulty to localize them. Similarly, pest
RPH also is detected well in GaFPN due to its relatively
large size (0.148%).

Data volume is another significant factor affecting model
performance. Our method obtains higher detection accuracy
on pest of class WM who holds huge number of training
examples with more than 64.75% AP even it is one of the
tiny objects. In spite of the limited number of training exam-
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ples, pest RP seems to be simply found in our dataset with
a high precision of 85.34% because its large difference in
colour and surroundings and our method could dramatically
improve localization precision of this pest compared with
other methods.

5.3 Precision–recall analysis

As for Precision–Recall (PR) analysis, we evaluate the PR
curves comparing our method to Faster R-CNN and FPN
in six classes shown in Fig. 6. It indicates that precision
keeps a high value with the recall increasing. Our method
with ResNet50 and Inception obtains a greater precision
and recall compared with other architectures. It means our
method effectively reduces false positives rate and misdetec-
tions rate. But pest SA is relatively difficult to attain a high
precision while maintaining recall in FPN method, in which
the PR curve starts to drop drastically at the recall of 0.6, but
our method keeps a little bit more.

Yet, our method does not get a significant improvement in
pest SW. It is probably because Faster R-CNN could cat-
egorize and localize it well. PR curves for class SA and
RP represent that it is hard to obtain a high recall value but
could get satisfied precision so these two curves signify. Our
method could make sure that almost all the detected pests of
these two classes are correct. It improves most on class #4
that obtains much higher recall than FPN methods.

5.4 Challenge analysis

Table 4 illustrates the proposed approach performs with four
typical challenges dense, sparse, sunlight and noise com-
pared to approaches. Note that the mAPdense and mAPsparse
are computed on 5 classes excluding pest SW while oth-
ers are evaluated on 6 classes. The results show that our
method using ResNet50 outperform Faster R-CNN and other
generic detection methods on our pest detection in 4 typi-
cal challenges. For the most influential factor ‘background
noise,’ our method has an improved mAP over 6% to Faster
R-CNN. This shows that GAM module effectively helps to
filter the background noise in spatial level. In addition, under
the denser anchor boxes employed in our method, pests with
dense distribution is better detected.

For visualizing the effect of GAMmodule in our method,
we generate feature maps with four challenges outputted by
our method and FPN using ResNet50 backbone in Fig. 7.
Note that only parts of feature maps are presented here due
to the limited space and these feature maps are extracted
from shallow block to deep block. The first observation is
that feature maps in shallow block are strongly influenced
by background, in which those in FPN become to be more
severe while our method can filter out the environment to
some extent. Second, with the layer going deeper, the pest
in feature maps is learned better and lighter points appear
in potential pest locations. It is found that the feature maps
in GaFPN diminish the highlights of non-objects and focus
more attention on pest regions with lighter activation points.
Specifically, in Fig. 7b and d, FPN cannot effectively detect

Table 4 Detection results comparison on 4 typical challenges

Method Backbone mAPdense mAPsparse mAPsunlight mAPnoise

Generic detection methods

Faster R-CNN [7] ResNet50 59.76 64.40 62.93 59.29

Faster R-CNN [7] ResNet50+FPN 64.68 65.88 66.07 61.47

RetinaNet [34] ResNet50+FPN 58.03 56.74 61.17 57.84

Yolov3 [11] DartNet53 57.48 55.84 59.42 55.49

FCOS [44] ResNet50+FPN 61.94 61.99 63.87 58.46

Tiny object detection methods

ClusDet [39] ResNet50+FPN 65.84 58.96 70.62 60.04

DMNet [40] ResNet50+FPN 68.02 61.75 72.63 61.29

DCTDet [45] ResNet50+FPN 69.85 63.48 74.36 63.92

Li et al. [41] ResNet50+FPN+DarkNet53 70.64 66.97 76.32 65.15

Our method

Ours Inception+GAM 61.37 63.71 65.49 60.27

Ours Inception+GaFPN 64.34 64.87 66.91 62.60

Ours ResNet50+GAM 64.81 65.94 69.19 63.08

Ours ResNet50+GaFPN 66.75 68.58 70.53 65.26

The AP is computed over IoU 0.5
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(a) Feature maps for dense distribution challenge

(b) Feature maps for sparse distribution challenge

(c) Feature maps for sunlight illumination challenge

(d) Feature maps for background noise challenge

Fig. 7 Comparison of feature visualization for four major challenges
in our dataset. The first rows represent feature maps outputted from 3
blocks (shallow to deep) of our method with ResNet50 backbone while

the second rows are those from FPN with ResNet50. Light points in
these feature maps indicate the potential pest locations predicted by
network
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Table 5 Ablation study on our
method

Method Backbone GAM HEE mAP

Ours ResNet50+FPN 69.06

Ours ResNet50+FPN � 71.16

Ours ResNet50+FPN � 70.48

Ours ResNet50+FPN � � 71.82

We investigate the effect of GAM module and HEE training strategy

Table 6 Quantitative results on
the VisDrone and TinyPerson
benchmark

Benchmark Method Backbone AP s/img(GPU)

VisDrone [48] ClusDet [39] ResNeXt101 [50]+FPN 53.2 0.234

RRNet [51] Stacked Hourglass [52] 55.8 0.327

DMNet [40] ResNeXt101 [50]+FPN 49.3 0.294

DCTDet [45] ResNeXt101 [50]+FPN 56.6 0.316

Ours ResNeXt101 [50]+GaFPN 46.7 0.096

TinyPerson [49] FCOS [44] ResNet50+FPN 29.25 0.042

RetinaNet [34] ResNet50+FPN 43.32 0.055

Adaptive FreeAnchor [53] ResNet50+FPN 51.23 0.051

Faster R-CNN [7] ResNet50+FPN 53.48 0.060

Ours ResNet50+GaFPN 56.04 0.067

most of the pests when influenced by sparse distribution and
large background noise. Although our method with GAM
might light up lots of noises, it could maintain pest informa-
tion while FPN become losing some pest locations. This is in
line with the conclusion that GaFPN is more able to fit tiny
targets pest and leads to better detection performance. The
final detection demonstration results are shown in the right
columns. Our method achieves multiclass tiny pest detection
in wild scene under various distributions of both dense and
sparse in Fig. 7a and b. It also overcomes the challenges with
large sunlight shadow and background noise influence and
obtain a better detection performance compared to FPN in
Fig. 7c and d.

5.5 Ablation study

The key idea of our method is to develop a global activated
module for high-quality feature extraction as well as a HEE
training strategy. To further investigate the effect of the pro-
posed modules, we present the ablation study in Table 5.
As it can be observed, the GAM module helps a lot on our
method to accurately detect tiny pests, which achieves 2.10
mAP improvement compared with the baseline that does not
employ GAM module. On the other hand, HEE can help
our model to quickly find the hard examples and enhance
the training values of our training data. On the experiments,
within HEE, our method can get further 0.66 mAP improve-
ment. Therefore,we can conclude that ourGAMandHEEare
both useful component for our method in tiny pest detection
task.

5.6 Generalization capacity

Our method is not picky about the type of objects being
detected. Thus, we also validate the detection performance of
our method on the other popular tiny object detection bench-
marks. Herewe chooseVisdrone [48] and TinyPerson [49] as
validation datasets. We compare our method on the baselines
provided from original Visdrone competition leaderboard
and TinyPerson article. The experimental results are shown
in Table 6. As it could be seen, on Visdrone benchmark, our
methods hold the advantage of high inference speed for tiny
object detection with only 0.096 seconds for one image. In
addition, on another tiny object benchmark TinyPerson, we
could also find that within GAM and HEE modules con-
tribute to an obvious improvement on AP metric. This could
conclude that our method shows to be a good way to detect
objects in a finer level.

5.7 Limitations and improvements

Despite that our approach shows better performance than
other popular object detectors, there are two limitations for
future study. One is that our method gets the lowest mAP
when the input image is in noisy background. It is probably
because the appearance of noise factor is very similar to pest
regarding the size or shape. It is hard to distinguish them from
spatial or depth attention extracted from feature pyramid.
The other point is that our method may be suitable to some
certain tiny object detection case in the wild, with properties
of severe clustering or overlapping distribution. Future work
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will lie in discovering a finer feature extraction and detection
architecture and also employ the tiny pest detection models
into real-world applications.

6 Conclusion

We have presented a global activated feature pyramid net-
work (GaFPN)- based CNN approach for tiny pest detection
in wild scene. Our approach extracts depth and spatial
information from feature pyramids of pest images to make
discriminative features of tiny pests more activated in deep
learning architecture.We evaluate the approach in large-scale
wild tiny pest dataset over 27k images. The results show
that our approach delivers an average 71% accuracy and out-
weighs two state-of-the-art methods. In future wewill extend
this approach in more general tiny object detection cases in
the wild.
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