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Toward Real-World Category-Level Articulation
Pose Estimation

Liu Liu , Han Xue , Wenqiang Xu , Haoyuan Fu , and Cewu Lu , Senior Member, IEEE

Abstract— Human life is populated with articulated objects.
Current Category-level Articulation Pose Estimation (CAPE)
methods are studied under the single-instance setting with a
fixed kinematic structure for each category. Considering these
limitations, we aim to study the problem of estimating part-level
6D pose for multiple articulated objects with unknown kinematic
structures in a single RGB-D image, and reform this problem
setting for real-world environments and suggest a CAPE-Real
(CAPER) task setting. This setting allows varied kinematic
structures within a semantic category, and multiple instances
to co-exist in an observation of real world. To support this task,
we build an articulated model repository ReArt-48 and present an
efficient dataset generation pipeline, which contains Fast Articu-
lated Object Modeling (FAOM) and Semi-Authentic MixEd Real-
ity Technique (SAMERT). Accompanying the pipeline, we build
a large-scale mixed reality dataset ReArtMix and a real world
dataset ReArtVal. Accompanying the CAPER problem and the
dataset, we propose an effective framework that exploits RGB-D
input to estimate part-level pose for multiple instances in a single
forward pass. In our method, we introduce object detection
from RGB-D input to handle the multi-instance problem and
segment each instance into several parts. To address the unknown
kinematic structure issue, we propose an Articulation Parsing
Network to analyze the structure of detected instance, and also
build a Pair Articulation Pose Estimation module to estimate per-
part 6D pose as well as joint property from connected part pairs.
Extensive experiments demonstrate that the proposed method can
achieve good performance on CAPER, CAPE and instance-level
Robot Arm pose estimation problems. We believe it could serve
as a strong baseline for future research on the CAPER task. The
datasets and codes in our work will be made publicly available.

Index Terms— Articulation estimation, category-level 6D pose,
real-world, articulation parsing.

I. INTRODUCTION

ARTICULATED objects are pervasive in our everyday life.
Unlike rigid objects which can be regarded as a whole
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when moving in 3D space, articulated objects are usually com-
posed of several rigid parts that are linked by different kinds
of joints, e.g. revolute, prismatic, screw, etc. In comparison
with rigid objects, the diverse kinematic structures endow the
articulated object higher Degree of Freedom (DoF), making
the estimation of articulated object pose challenging.

Recently, the Category-level Articulated object Pose Esti-
mation (CAPE) task has drawn increasing attention [1], [2].
Since the mechanism of estimating the articulation status from
a single-view observation (e.g. RGB-D image, point cloud) can
benefit downstream research and applications, such as scene
understanding, robot manipulation, and VR/AR. However,
currently, the task is generally studied under a single-instance
setting with a synthetic point cloud, where the articulated
object has a known and fixed kinematic structure for each
category. Apparently, this assumption does not hold for many
real-world cases as shown in Fig. 1. Specifically, (1) the syn-
thetic object point cloud may have a domain gap for real-world
applications, (2) daily objects may have different kinematic
structures within a semantic category, e.g. drawers with dif-
ferent numbers of columns, (3) multiple objects may co-occur
in a single observation. Given the gap between the current
research direction and the real-world requirements, we extend
the CAPE task by considering all the issues and reformu-
late the problem setting as CAPE-Real (short for CAPER).
To support the CAPER task, we proposed a novel RGB-D
based dataset ReArtMix which contains the objects from our
proposed articulated model repository named ReArt-48 for
training a baseline framework to address the CAPER task.

NOMENCLATURE

CAPE Category-level Articulation Pose Estimation.
CAPER Category-level Articulation Pose Estimation-

Real.
FAOM Fast Articulated Object Modeling.
SAMERT Semi-Authentic MixEd Reality Technique.
APN Articulation Parsing Network.
NOCS Normalized Object Coordinate Space.
URDF Unified Robot Description Format.
A-NCSH Articulation Normalized Coordinate Space

Hierarchy.
NAOCS Normalized Articulated Object Coordinate

Space.
NPCS Normalized Part Coordinate Space.
P Point Cloud.
S Part Segments.
δ Joint Type.
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q Joint Location.
u Joint Axis.
R 3D Rotation.
t 3D Translation.
H Joint Heatmap.
V Offset Vector.

When constructing the dataset ReArtMix, two major chal-
lenges exist: First, there is no suitable public model repos-
itory for real articulated objects, current popular articulated
model repositories either contain only synthetic models [3],
[4] or support only instance-level task [5]. Second, collecting
RGB-D training data with articulated pose annotations is cost-
prohibitive. Therefore, we take a synthetic path to create
the dataset. In detail, we build a Real-world Articulated
model repository named ReArt-48 which contains 48 different
scanned models under 5 categories. The part segmentation and
joint properties of the scanned models are annotated through
a Fast Articulated Object Modeling (FAOM) pipeline. In our
FAOM, we design an offline annotation interface that inte-
grates part region segmentation by polygon, joint properties
annotation with multi-view refinement, and animation ren-
dering that helps verification. In FAOM, each real scanned
articulated object can be modeled within 15 minutes. To the
best of our knowledge, FAOM is the first articulated object
modeling pipeline and promote efficiently building large-
scale real-world datasets in an easy way. Once obtaining the
annotated object models, we composite them with real-world
background RGB-D images in a physically plausible manner
and automatically generate a large-scale mixed reality dataset
ReArtMix along with the annotations required (e.g. object
part segmentation, part pose, joint properties, etc.) by our pro-
posed Semi-Authentic MixEd Reality Technique (SAMERT).
To prove ReArtMix can effectively reduce domain gap when
transferring to real-world scenarios, we also build a fully
real-world dataset ReArtVal for validation. The quantitative
results are reported in Table II. In comparison with annotating
real-world images totally by a human (∼ 2 min/image), the
FAOM-SAMERT pipeline can save a proliferation of human
labors for image capturing and annotation (∼ 0.2 sec/image).

Accompanying the dataset ReArtMix, we propose a learning
framework inspired by Normalized Object Coordinate Space
(NOCS) [6]. Our method can utilize both RGB and depth
information, handle multiple instances in a single forward
pass. It consists of an RGB-D based object detector, a point-
cloud based Articulation Parsing Network and a Pair Pose
Estimation Network that can adapt to varied kinematic struc-
tures for detected instances. Specifically, for each detected
articulated instance, our method applies an Articulation Pars-
ing Network (APN) that exploits part segmentation module
to analyze the kinematic structure. Next, each connected part
pairs from the instance is fed into a PointNet++ encoder-
decoder architecture to predict pair NOCS map as well as
joint properties, e.g. joint axis and joint location. Finally, based
on the NOCS map and joint prediction, we recover part-level
6D pose by a pair pose optimization mechanism. To evaluate
the framework, we test our method on the proposed datasets
ReArtMix and ReArtVal with Average Precision on rotation

Fig. 1. In real-world scenarios, the category-level articulated object pose
estimation problem will face more challenges including varied kinematic
structures within a semantic category, and multiple instances within a single
RGB-D image.

error, translation error, 3D bounding box IoU, joint angle error
and joint distance error as metrics, and also test on CAPE
setting of samples rendered with PartNet-Mobility [3] and a
real-world Robot Arm dataset.

Our contributions can be summarized in three folds:

(1) we bring the previously proposed CAPE problem towards
real-world setting as CAPER problem, which is more
realistic and complicated as we consider multiple unseen
objects with varied kinematic structures in a semantic
category.

(2) We collect a real-world articulated model repository
ReArt-48 and propose a FAOM-SAMERT pipeline to
make the preparation of the real-world-like training
dataset feasible. We also build a full annotated real-world
dataset ReArtVal to validate the performance of our
method trained on ReArtMix.

(3) We propose an effective framework to address the
CAPER problem that could deal with multiple instance
occurrences and unknown kinematic structure issues.
Experiments show that our method could serve as a strong
baseline for the task.

II. RELATED WORK

A. Instance-Level 6D Pose Estimation

There are plenty of works regarding instance-level 6D pose
estimation task, which aims to predict objects’ 3D location and
3D rotation given available 3D CAD models [7]–[9]. Accord-
ing to the different ways of object alignment, these past works
could be roughly categorized into template-based methods and
feature-based methods. Generally, template techniques [10],
[11] exploit a rigid template to predict 6D pose by matching
observed partial point clouds with corresponding 3D mod-
els with registration algorithms such as ICP. Template-based
methods work well on detecting and recognizing texture-less
objects but might fail for highly occluded instances. The other
family, feature-based methods [12]–[14] aim to regress the
object surface position for every pixel in the image and estab-
lish the 2D-3D correspondences by extracted local features.
Under the powerful enough texture features, these methods
could handle the 6D pose estimation well.
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B. Category-Level 6D Pose Estimation

Instance-level pose estimation aims to predict objects’ 3D
rotation and translation given 3D object models [9], [15].
On the contrary, the goal of category-level pose estimation
is to predict an input instance’s pose and location relative to
category-specific representation. The first proposed method is
to predict 3D-3D per-pixel correspondences between obser-
vations and canonical coordinates using a normalized space
for category-level representation [6]. Besides, [16] present
to directly optimize the predicted rotation, translation, and
scale simultaneously in a single monocular image. In addition
to the static image-based estimator, [17] propose the first
category-level pose tracker, which adopts geometric or seman-
tic keypoints to estimate the interframe motion. Among these
methods, they mainly focus on rigid pose estimation while our
task aims to estimate articulation pose in the real world.

C. Articulated Object Pose Estimation

Articulation estimation has been studied for decades,
where previous works can be broadly categorized into
interaction-based, video-based, and single-view-based.
Interaction-based methods are mostly studied in the Robotics
community, which adopt feedback from manipulation actions
to characterize a distribution of articulation models [18]. The
interaction-based approaches require some ways to interact
with the object, which limits the applicability. On the other
hand, a video recorded with a moving articulated object
can be a good source to estimate its motion property in an
image sequence [19]. With a simplified setting, instead of
a clip of video that Yi et al. take a pair of unsegmented
shape representations as input to predict correspondences, 3D
deformation flow and part-level segmentation [20]. With the
development of deep learning techniques, the single-view-
based CAPE setting is becoming possible. A-NCSH [1], as an
extension of NOCS, is developed for single articulated object
pose estimation. However, it holds an obvious limitation that
requires fixed kinematic structure as prior information for
each input object while our CAPER setting allows multiple
instances and various kinematic structures.

D. Datasets for Articulation Estimation

An unavoidable challenge for learning the articulation esti-
mation model is the lack of large-scale training data with
sufficient fully annotated category, instance, mask and 6D pose
per part. To solve this issue, several works focus on generating
training data rendered with rigid synthetic object models [21].
Considering articulated objects, PartNet-Mobility [3] is built
with virtual CAD models with unreal texture, which hin-
ders the development towards real-world applications. More
recently, RBO dataset [5] owns only 14 objects captured from
the real world and none of them belongs to the same category.
Therefore, we build a new realistic articulated object dataset
and propose an automatic way to generate large-scale training
samples.

Fig. 2. Fast Articulated Object Modeling pipeline. We use an iterative
method to refine the initial articulation annotation.

III. PROBLEM STATEMENT

As mentioned earlier, the CAPER problem setting advances
the CAPE setting in two aspects: (1) multi-instance in an
image. This setting helps us to define an end-to-end deep
learning task to analyze articulated object pose, which is
more in line with the real-world environment compared with
CAPE setting. (2) objects of the same semantic category have
different kinematic structures. This setting aims to solve the
unseen objects with various structures.

In CAPER problem, given a single RGB-D image I as
input, a CAPER model will firstly learn to detect N objects
with bounding box O = {(ui

1, v
i
1, ui

2, v
i
2)}N

i=1 with left top
(ui

1, v
i
1) and right bottom (ui

2, v
i
2) coordinates as well as their

corresponding categories C = {ci}N
i=1. In dealing with each

detected instance, we project the instance patch of i th instance
to local point cloud P i = {(xi

j , yi
j , zi

j , r i
j , gi

j , bi
j )}M

j=1 which
has M points and predict segmentation for unknown number
of parts S = {s j }M

j=1, where s j is the index of one of
the maximum K parts, as well as kinematic structure for
the input instance, given the segmentation S. Then, based
on the kinematic structure, we randomly sample the part
pairs k1 and k2 that are connected by joint, and predict: (1)
part-level NOCS map P ′ describing canonical representation
P ′ = {p′

j = (x ′
j , y ′

j , z′
j ) ∈ R

3} j=(k1,k2) (we use symbol ′
to define the coordinate in NOCS space); (2) joint properties
that describes joint type δ(k1,k2), location q(k1,k2) and axis
u(k1,k2). Finally, given these prediction results, we recover the
3D rotation {R(k1), R(k2)} and 3D translation {t(k1), t(k2)} for
the part pairs.

IV. DATASETS

As there exists no dataset to fully support the CAPER task,
we construct the ReArtMix dataset by taking a mixed reality
approach to reduce the human labor for annotation. Firstly,
we collect scanned models of common real objects with varied
kinematic structures and categories, and annotate part seg-
mentation along with joint properties of the objects using the
proposed FAOM pipeline (Sec. IV-A). Then, we compose these
articulated models with real-world background RGB-D images
to obtain training samples with full annotations (Sec. IV-B).
Last but not the least, we build up a real dataset for validation
(Sec. IV-C).

A. FAOM, Fast Articulated Object Modeling

1) Model Repository and Annotation: We scanned 48 hand-
scale objects from 5 common categories (such as box and
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Fig. 3. Our Semi-Authentic MixEd Reality Technique (SAMERT). We combine articulated models scanned from real objects with RGB-D images captured
from real scenes to generate composed real-world RGB-D images. Plane detection and collision detection are performed to make the synthetic data physically
reasonable.

stapler) in our daily life with EinScan Pro 20201 (version
3.6.0.5). To convert these scanned models to articulated mod-
els, instead of adopting the traditional 3D reverse engineering
software2 which is tedious and requires expertise, we propose
a fast modeling method FAOM illustrated in Fig. 2. During
real-world object scanning, we split all the objects into two
groups. The first one is those can be disassembled, e.g. drawer
rack and columns. We scan the parts of these models separately
and then align them into global coordinates together. The other
one is those cannot be disassembled. We scan them in a fully
open way and segment them into several movable parts. In this
way, we can efficiently obtain a large number of real-scanned
models and annotate them in the FAOM pipeline. FAOM pro-
vides a user interface that integrates the annotation functions of
part segmentation with predicted initialization, joint properties
annotation with multi-view images, and animation verification
on the whole object.

The annotated articulated objects are described with the
widely used Unified Robot Description Format (URDF) [22],
an XML file format to describe all elements of articulated
objects with chain or tree structure, including joint properties
and part meshes. The base link is the origin of the kinematic
tree. Finally, we collect 48 real-world articulated models with
full rich annotations to build our ReArt-48 model repository.
Some of the models are illustrated in Fig. 4.

2) Comparison With Other Model Repositories: As shown
in Table I, our object models have full features required for the
CAPER task. Compared to other real-world model reposito-
ries, such as RBO [5], our ReArt-48 holds two advantages:
(1) the number of objects is more than twice the object
number of the RBO dataset. (2) ReArt-48 contains 5 categories
and each category has around 10 models, which supports
category-level articulated object analysis research. Therefore,

1https://www.einscan.com
2https://www.3dsystems.com/software/geomagic-design-x

Fig. 4. Some of ReArt-48 model repository. We consider box, stapler, cutter,
scissors and drawer in our ReArt-48.

TABLE I

COMPARISON WITH OTHER POPULAR MODEL REPOSITORIES

rendering with our articulated models could own much more
details which provide powerful information for us to estimate
6D pose in the real world.
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Fig. 5. Our method for real-world articulated object pose estimation. There are four modules: object detection, part segmentation, Articulation Parsing
Network and Pair Pose Estimation Network. In our framework, we detect each articulated object from an RGB-D image and predict each instance’s part-level
NOCS and joint properties.

B. SAMERT, ReArtMix Dataset Generation

The training data for the CAPER task requires realis-
tic visual quality and high-precision annotations. However,
the accurate annotation for the part-level pose is time-
consuming, which is prohibitive for large-scale dataset prepa-
ration. To address this, we propose a novel Semi-Authentic
MixEd Reality Technique (SAMERT), whose pipeline is
illustrated in Fig. 3, based on Unity Engine3 of version
2019.3 to automatically generate such training dataset with
articulated models and pre-collected real-world RGB-D back-
ground images. These background images are snapshots from
20 different tabletop scenes with ∼ 200 viewpoints per scene.
Given the real-scanned object models and background images,
we present a physically reasonable compositing strategy to ren-
der RGB-D images with full annotations. Firstly we randomly
place the articulated objects with random scale and joint state
onto the desktop plane of the background image in 3D camera
space, which is predicted by PlaneRCNN [26] and RANSAC
algorithm. Part-level object pose and joint states are tracked
and recorded, as well as the collision status among objects.
The physics engine will guarantee the physically plausible
requirements, that is, no floating objects and intersections
between objects. We also randomly generate multiple direc-
tional lights with different orientations and colors to imitate
indoor lighting. Compared with another simulation-to-real data
generation pipeline, such as Wang et al. [6], our SAMERT
holds several advantages: Firstly, we render articulated objects
to generate numerous samples, which might cause much more
difficulty in data generation, such as self-collision. Secondly,
we adopt a physics engine Unity that fully considers the
physical properties of our objects to avoid collision in the
rendered images while Wang et al. [6] only consider visual
rendering. Finally, our SAMERT does not require any extra

3https://unity.com

background scene annotations, e.g. 3D plane and location
sampling points, which save a proliferation of human labors.

With the SAMERT process, we generate 100K RGB-D
images that are rendered on our collected over 1K back-
ground scenes, of which 90K are set aside for training
and 10K for validation. The render scenes contain various
tabletop backgrounds and are captured using Realsense D435i
camera, in which the scenes involve office, school, home
and so on. Among these images, 37 articulated models in
ReArt-48 are used to generate training images while the rest
of 11 objects are selected as unseen for validation. With the
real scanned models and real background scenes, our synthetic
semi-authentic data could drastically reduce the gap between
virtuality and reality, which can be quantitatively verified with
the real validation set described next.

C. ReArtVal, Real Data Acquisition for Validation

To validate the performance of our method in the real
world, we also build a fully real dataset in the form of video
sequences. For each category, we capture over 6K RGB-D
frames in 6 real-world tabletop scenes using RealSense D435i
camera.4 In terms of data annotation, we propose a semi-
automatic part-level 6D pose annotation pipeline referred to
LabelFusion [27], in which the annotation process can be
simplified into two steps: initial frame annotation and auto-
matic ground truth generation by RGB-D registration. Finally,
we capture over 6K RGB-D frames with full annotations
(bounding box, part segmentation, part-level 6D pose, joint
properties) to build our real-world dataset.

V. METHOD

We propose a framework to address the CAPER task.
The key challenge is to handle multiple instances within a

4https://www.intelrealsense.com/depth-camera-d435/
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Fig. 6. ReArtMix texture augmentation. We use Flat, Gradient, Chess
and Perlin Noise for augmenting the textures in our ReArtMix to ensure
generalization to real-world.

single image and varied kinematic structures (unknown joint
properties) within a semantic category. The multi-instance
problem can be tackled by object detection (Sec. V-A).
And an Articulation Parsing Network is designed to han-
dle the detected instance with unknown kinematic structures
(Sec. V-B). Finally, we sample the part pairs from the parsed
articulation structure and predict the NOCS map as well as
joint property for per-part pose recovering (Sec. V-C and
Sec. V-D). The training is formulated as a multi-task learning
problem (Sec. V-E). The overall pipeline is displayed in Fig. 5.

A. Object Detection

High detection performance is a high priority for our
method. Here we adopt an anchor-based object detector Reti-
naNet [28] for dense detection with RGB-D image, where the
input contains 6 channels (3 for RGB and 3 for XYZ). Since
unseen articulated objects usually hold various appearances in
texture, we adopt texture augmentation [29] to improve the
appearance diversity of the training set. Specifically, we ran-
domly generate flat colors, gradients of colors, chess patterns,
and Perlin noise as object textures shown in Fig. 6.

B. Articulation Parsing Network

For each detected bounding box Oi , we crop the
corresponding region in the input RGB-D image and
transform the patch into colorized point cloud P i =
{(xi

j , yi
j , zi

j , r i
j , gi

j , bi
j )}M

j=1. Then we design an Articulation
Paring Network (APN) to analyze and parse the kinematic
structure of the detected instance. In APN module, we train
a PointNet++ [30] encoder-decoder architecture for feature
extraction. At the end of PointNet++ feature propagation
layers, we build three multi-layer perceptions (MLPs) with
ReLU activation function that outputs K + 1 channels for
part segmentation, where K is the maximum number of rigid
parts in our dataset and 1 indicates the background. At the
same time, we also split the input colorized point cloud P i

into several semantic parts based on the predicted segments
{P i,(k), k = 1, 2 . . . K }. Each point cloud segment would be
fed into a parallel PointNet++ encoder network and extract
part descriptor (F)(k) with fixed dimensions for kth rigid part.
Finally, we build three extra MLPs for these part descriptors
and predict binary part connectedness. In this way, our APN

module could parse the unknown articulation structure for the
detected instance.

C. Pair Articulation Pose Estimation

1) Pair NOCS Prediction: After articulation parsing,
we could obtain the sampled part pairs P i,(m) and P i,(n) that
are correctly connected by joint. Based on these part pairs,
we build our Pair NOCS prediction branch that estimates
part-level NOCS mapping for articulation pose fitting. The
part-level NOCS map is defined for each separate rigid part
rather than the whole object, in which we define the rest
state for every part and normalized the shape of the rest state
into [0, 1] and centered into (0.5, 0.5, 0.5). In pair NOCS
prediction, we also build a PointNet++ architecture with the
end of 3 channels to densely predict the normalized coordinate
p′

j in NOCS space for each observed part.
2) Joint Prediction: Current methods such as A-NCSH [1]

for the CAPE setting require known kinematic structure as
prior knowledge. In our method, given the parsed articulated
object, we could automatically obtain the kinematic structure
without known joint properties. For the input connected part
pairs P (k1) and P (k2), we build another branch at the end of
PointNet++ to predict the joint property connecting the input
part pairs. In our joint prediction module, we aim to predict
three types of information for each kinematic joint: joint type
δ(k1,k2) (also known as kinematic way), joint location q(k1,k2)

and joint axis u(k1,k2). Due to the part pairs point cloud input,
we could densely predict joint property in our framework.
Specifically, we introduce two new branches into the end of
PointNet++ with 2 and 6 channels, in which 2 indicates
that the joint type prediction aims to classify each part into
2 kinematic way δ j (prismatic or revolute) and 6 channels are
used to regress the joint location q j and joint axis u j . For
joint axis u(k1,k2), we average the u j on points from part pairs
k1 and k2:

u(k1,k2) =
∑M

j=1 u j1(s j = k1) + u j1(s j = k2)
∑M

j=1 1(s j = k1) + 1(s j = k2)
(1)

Simultaneously, we follow the voting scheme to estimate
the joint location (anchor point) q(k1,k2). Different from [1]
that predict joint location in NOCS space, we vote for the
q(k1,k2) directly in camera space. We build three parallel MLP
branches with 1, 3 and 2 channels to densely predict per-
point heatmap, offset vector and support point classification
respectively. To be specific, for input pair part point cloud
P (k1,k2), we exploit the point position p j = (x j , y j , z j ) to

predict the heatmap H(k1,k2)
j :

H(k1,k2)
j = 1 − ‖(p j − q(k1,k2)) × u(k1,k2)‖

σ
(2)

where σ is the distance threshold that defines neighbor radius.
Here we only consider the points where the distance to the
joint is smaller than σ . These points are named as support
points and we use another MLP to achieve a binary classifi-
cation for these support points Ps,(k1,k2).
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In order to vote for the joint location q(k1,k2), we also
perform a per-point offset vector V(k1,k2)

j that defines unit
direction from point pi to the joint:

V(k1,k2)
j = (p j − q(k1,k2)) × u(k1,k2)

H(k1,k2)
j

(3)

Finally, we adopt a voting scheme to obtain the joint
location q(k1,k2) by:
q(k1,k2) = 1

Ns

∑M

j=1
1(p j = ps

j )(p j

+ σV(k1,k2)
j (1 − H(k1,k2)

j )) (4)

where Ns indicates the number of support points.

D. Pair Pose Optimization

For pair connected parts with predicted NOCS map and
joint properties, we further optimize the part-level 6D pose
following the pose fitting algorithm with kinematic con-
strains [1]. Specifically, given the point clouds of part pairs
P (k1) and P (k2) as well as their corresponding NOCS map
P ′(k1) and P ′(k2), we first separately recover the 3D rotation
and translation Rk1 , tk1 and Rk2 , tk2 by minimizing the energy
function E p for fitting the NOCS canonical representation into
observed points in camera space:
E p = 1

Nk1

‖P (k1) − (sk1 Rk1P ′(k1) + tk1 )‖2

+ 1

Nk2

‖P (k2) − (sk2 Rk2P ′(k2) + tk2 )‖2 (5)

where sk1 and sk2 are the normalized scale factors for part
k1 and k2 that are initialized by Umeyama algorithm [31].
Then we also consider kinematic constraints by further opti-
mizing pose with predicted joint properties. For the joint axis
u(k1,k2) that connects the part pairs k1 and k2, we minimize
the energy function with kinematic constraints Ek :

Ek = ‖Rk1 u(k1,k2) − Rk2 u(k1,k2)‖2 (6)

Finally, the pose optimization is to minimize the total energy
function E = E p+Ek , which is the sum of per-part energy E p

and kinematic constrained energy Ek . Similar to [1] and [6],
we also use RANSAC for outlier removal.

E. Multi-Task Loss Function

For articulated object detection task, we use focal loss [28]
and smoothL1 loss for bounding box classification and regres-
sion Ldet = Lcls +Lreg . In terms of pose estimation, the total
loss for articulated object estimation Lpose is the sum of losses
from Articulation Parsing Network LAP N and those from Pair
Pose Estimation Network LP P E N , where:

LAP N = λ1Lseg + λ2Lconnect + λ3Lt ype (7)

LP P E N = λ4Lnocs + λ5Lsupp + λ6Lheatmap

= +λ7Lo f f set + λ8Laxis (8)

where the eight multiplication factors λ1, λ2, λ3, λ4, λ5, λ6,
λ7, λ8 are set to be 1, 1, 0.5, 10, 1, 0.5, 1, 0.2. To find

Fig. 7. Articulated pose estimation results on ReArtMix dataset.

Fig. 8. Articulated pose estimation results on ReArtVal dataset.

proper hyper-parameters, we use the cross-entropy loss for part
connectedness classification Lconnect , joint type loss Lt ype and
segmentation task Lseg . Then L2 is adopted for NOCS map
loss Lnocs , joint prediction related loss Lheatmap, Lo f f set and
Laxis . Finally, we use IoU loss for joint support points classifi-
cation Lsupp . Specifically, we initialize these hyper-parameters
followed by A-NCSH [1], and 0.5 times to 1.5 times initial
values as search range, then divide the ReArtMix dataset
into ten folds to find the optimal hyper-parameters by cross-
validation method.

VI. EXPERIMENTS

A. Experiment Setup

1) Implementation: We use RetinaNet [28] with ResNet-
50 backbone [32] and FPN [33] as our object detector.
We use the SGD optimizer with the momentum of 0.9 to
train the detector with total training epoch 8. During training
PointNet++, we use Adam optimizer with an initial learning
rate of 0.001 and 16 batch size. Both object detector and
PointNet++ pose estimator are trained on an Intel(R) Xeon(R)
CPU E5-2678 v3 @2.50GHz desktop and 4 TITAN RTX
GPUs (24GB memory).

2) Baselines: Since no other methods are designed targeting
at CAPER setting, we use the CAPE methods NPCS, NAOCS
and A-NCSH in our dataset, where the A-NCSH requires
kinematic structure and joint type as known information while
our method estimates articulation pose without any priors.
In addition, we also propose an ablated version of our method
to help compare performance. In this baseline, we adopt direct
regression for joint axis and location prediction rather than
voting scheme.

3) Metrics: In evaluation with CAPER setting, we report
Average Precision (AP) over all the parts of each category,
for which the error is less than 5cm and 10cm for translation,
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Fig. 9. Qualitative results on ReArtVal dataset.

5◦ and 10◦ for rotation. We also average the AP over various
error thresholds with AP1◦:10◦ for rotation and AP1cm:10cm for
translation. We also use 3D IoU 0.5 and 0.7 as the threshold
to report AP and AP0.5:0.7. In terms of joint evaluation, we use
AP under angle error 5◦ and 10◦ of joint axis, and distance
error 5cm and 10cm of joint location. When evaluating with
CAPE setting, we use pose accuracy at 10◦, 10cm, and 3D
IoU 0.7 since this setting does not require object detection.

B. Results With CAPER Setting

We report the results of our method training on the ReArt-
Mix training set while testing on the ReArtMix test set and
ReArtVal set respectively. In ReArtMix test set, our method
achieves mean AP with 50.6%, 86.7% and 59.7% for rotation
error 5◦, translation error 5cm and 3D IoU@0.5. Specifically,
our method performs 77.6% AP on rotation error 5◦ for box,
which outperforms other categories. On the contrary, AP on
translation for the drawer is much worse than others with
only 63.3% for translation error 5cm. This could be explained
by the larger average size of drawers in our dataset, which
increases the difficulty in estimating their precise locations.
See more details in Fig. 7.

When testing on ReArtVal set on Fig. 8, there appears a
drop for all the categories compared to ReArtMix evaluation.
In real-world data ReArtVal, our method could obtain average
34.4%, 84.6% and 53.2% for rotation error 5◦, translation
error 5cm and 3D IoU 0.5. In Table II, comparing with
A-NCSH that uses ground truth kinematic structure and joint
type, we could still obtain a comparable performance on
drawer and box with only 1.3% and 0.5% AP drop for

rotation error 10◦ as well as 1.8% and 2.5% drop for
translation error 10cm. This indicates that our method could
partly address the pose estimation issue in the real world.
In terms of joint prediction performance, Table III shows the
performance comparison. As it could be observed, when voting
joint location in camera space, our method could obtain a
comparable performance (86.5% AP for 5cm distance error)
with A-NCSH that uses ground truth kinematic structure.
Besides, we also achieve 35.7% and 70.7% AP for 5◦ and 10◦
joint angle error. Qualitative results are illustrated in Fig. 9.

C. Ablation Study

1) Regression Versus Voting Scheme: We compare the
results using per point voting strategy with a direct regression
strategy in Table IV. On the ReArtVal dataset, the dense
prediction per-point/pixel method is consistently better than
direct regression, which achieve 3.0%, 4.2% and 2.2% on
pose estimation evaluation. Besides, for joint prediction, our
method using the voting scheme can also obtain better per-
formance compared with direct regression method, with 1.6%
on joint axis prediction and 1.1% on joint location prediction.
Therefore, we can conclude that dense voting might be a better
way in our CAPER task because direct regression largely relies
on powerful global part feature representation.

2) Performance of Articulation Parsing: Articulation pars-
ing is one of the core components of our work. To discuss the
performance of the APN module, we illustrate the prediction
accuracy on Joint Connectedness and Joint Type in Table V.
As it can be observed, our APN module could achieve 0.78
joint connectedness accuracy on Drawer, which holds various
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TABLE II

POSE ESTIMATION PERFORMANCE COMPARISON ON REARTVAL DATASET. WE COMPARE OUR METHOD WITH NAOCS, NPCS AND A-NCSH,
IN WHICH A-NCSH REQUIRES GROUND TRUTH JOINT TYPE AND KINEMATIC STRUCTURE SO IT IS THE UPPER BOUND OF OUR METHOD

TABLE III

JOINT PREDICTION PERFORMANCE ON REARTVAL DATASET. NOTE THAT ONLY PRISMATIC JOINTS ARE DEFINED IN DRAWER SO THERE IS ONLY

EVALUATION ON JOINT AXIS ERROR FOR DRAWER

kinematic structures in this category. This indicates that our
method can effectively analyze the structure of unseen objects.
On the other hand, the articulation parsing performance also
helps our method reach upper bound performance (A-NCSH
with ground truth kinematic structure and joint type).

D. Results With CAPE Setting

We also evaluate our method on a public synthetic articu-
lated model repository PartNet-Mobility [3] for the CAPE task.
We select 91 models from three categories, including drawer,
refrigerator, and trashcan with various kinematic structures.
We render these models in Unity to generate synthetic images
with these models. For each category, we have 5,000 images
for training and 1,000 images for testing.

In Table VI, we report the performance of our method
along with some strong baselines, namely NPCS, NAOCS
and A-NCSH [1], in which A-NCSH uses joint properties as
ground truth so it performs as the upper bound of our method.
As it could be seen, our method shows a good performance that

achieves average 76.2%, 27.8% and 33.5% accuracy for 10◦,
10cm and 3D IoU of 0.7. For the A-NCSH method, we could
also obtain a comparable result on drawer and refrigerator,
where there are only 2.7% and 2.4% accuracy disparity on
rotation error 10◦. Table VI also shows the joint accuracy
comparison of our method in joint angle error 5◦ and 10◦.
Compared with A-NCSH that predicts joint property with
known kinematic structure, our method also presents passable
results with 89.6%, 70.5% and 78.3% in joint angle accuracy.
Qualitative results are illustrated in Fig. 10.

E. Results With Instance-Level Robot Arm

For instance-level articulation pose estimation task, we eval-
uate our method on a robot arm with 7 parts and 6 joints.
We capture 63 videos with over 25K frames for Franka Robot
Arm with random robot arm poses and split these videos into
51 for training and 12 for testing. To automatically annotate
these frames, we calibrate the camera extrinsic matrix for each
video and then simulate the robot arm with poses as well as a
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TABLE IV

PERFORMANCE COMPARISON ON OUR METHOD USING DIRECT REGRES-
SION AND VOTING SCHEME FOR JOINT AXIS AND LOCATION PRE-

DICTION. FOR POSE ESTIMATION RELATED RESULTS, WE REPORT

AP FOR ROTATION ERROR 5◦ , TRANSLATION ERROR 5CM AND

3D IOU 0.5. FOR JOINT ESTIMATION, WE REPORT AP FOR
JOINT AXIS ERROR 5◦ AND JOINT LOCATION

ERROR 5CM

TABLE V

PERFORMANCE ON ARTICULATION PARSING. NOTE THAT THE SCISSOR IN
OUR DATASET ONLY HAVE TWO RIGID PARTS AND REVOLUTE JOINT

SO THE PREDICTION ACCURACY ON JOINT CONNECTEDNESS AND

JOINT TYPE IS 1.00

TABLE VI

PERFORMANCE COMPARISON ON PARTNET-MOBILITY DATASET. NOTE

THAT WE DO NOT REPORT JOINT ACCURACY FOR NAOCS AND NPCS
BECAUSE JOINT INFORMATION IS NOT DEFINED IN THESE TWO

METHODS. BESIDES, ONLY PRISMATIC JOINTS ARE DEFINED IN

DRAWER SO THERE IS ONLY EVALUATION ON JOINT AXIS
ERROR FOR DRAWER

camera in Unity Engine to capture the full annotations, such
as segmentation map, per-part 6D pose and joint property in
camera space.

We report the performance of our method on our robot arm
dataset in Table VII and Table VIII. As it could be seen, our
method can perform well on estimating per-part pose with
98.8% to 48.4%, and 99.6% to 25.5% in part 1 to part
7 at rotation error 10◦ and translation error 10cm. In addition,
we could also obtain good performance for joint prediction
with maximum 94.6% and 95.7% at joint angle error 5◦ and
distance error 5cm. In detail, due to the multi-depth structure

Fig. 10. Qualitative results on PartNet-Mobility.

TABLE VII

POSE ESTIMATION RESULTS ON ROBOT ARM DATASET. WE EVALUATE
POSE ACCURACY ON ROTATION ERROR 5◦ AND 10◦ , TRANSLATION

ERROR 5CM AND 10CM, 3D IOU 0.5 AND 0.7

TABLE VIII

JOINT PREDICTION RESULTS ON ROBOT ARM DATASET. WE EVALUATE
JOINT ACCURACY ON ANGLE ERROR 5◦ AND 10◦ , DISTANCE ERROR

5CM AND 10CM. NOTE THAT FOR FRANKA ROBOT ARM, ADJACENT

PARTS ARE LINKED BY ONE JOINT SO THERE ARE 6 JOINTS IN
TOTAL

of the robot arm, our method might not perform well on the
end part and end joint, with only 16.4% and 8.0% for pose
error as well as 41.1% and 8.4% for joint error. This indicates
that when the kinematic structure deepens, the accumulative
error would be more obvious. Qualitative results are shown in
Fig. 11.
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Fig. 11. Qualitative results on Robot Arm. There are 7 parts and 6 joints in
our Robot Arm dataset.

Fig. 12. Failure cases of our method on ReArtVal dataset.

F. Failure Cases and Limitations

The failure cases of our method on ReArtVal are demon-
strated in Fig. 12. We summarize the failure of our method on
CAPER task into the following reasons: (1) Detection missing.
There exist a domain gap between mixed reality data and
real-world data that influence detection accuracy. (2) Quality
of depth image. The depth camera holds its limitation on an
inaccurate depth map, especially when the scissor or cutter
lays flat on the table.

VII. CONCLUSION

In this paper, we extend the CAPE task and formulate the
CAPER problem for real-world articulation pose estimation.
Accompanying the task setting, we provide a full package
of solutions including the FAOM-SAMERT pipeline to semi-
automatically build the dataset for the CAPER, the effective
framework that could deal with various kinematic structures,
and multiple-instance occurrence issues. We hope the proposed
CAPER task can help the researchers to rethink the CAPE
task setting, and the proposed dataset generation pipeline and
learning framework can serve as a strong baseline for future
research.
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