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In recent years, researchers have explored reinforcement learning based object detection methods.
However, existing methods always suffer from barely satisfactory performance. The main reasons are
that current reinforcement learning based methods generate a sequence of inaccurate regions without
a reasonable reward function, and regard the non-optimal one at the final step as the detection result
for lack of an effective region selection and refinement strategy. To tackle the above problems, we pro-
pose a novel reinforcement learning based object detection framework, namely ReinforceNet, possessing
the capability of the region selection and refinement by integrating reinforcement learning agents’ action
space with Convolutional Neural Network based feature space. In ReinforceNet, we redevelop a reward
function that enables the agent to be trained effectively and provide more accurate region proposals.
In order to further optimize them, we design Convolutional Neural Network based region selection net-
work (RS-net) and bounding box refinement network (BBR-net). Particularly, the former consists of two
sub-networks: Intersection-of-Union network (IoU-net) and Completeness network (CPL-net) which are
employed jointly for selecting the optimal region proposal. The latter aims to refine the selected one as
the final result. Extensive experimental results on two standard datasets PASCAL VOC 2007 and VOC 2012
demonstrate that ReinforceNet is capable of improving the region selection and learning better agent
action representations for reinforcement learning, resulting in the state-of-the-art performance.

� 2021 Elsevier B.V. All rights reserved.
1. Introduction

Recent years have witnessed some reinforcement learning (RL)
based object detection methods [1,2,5–8,12]. These RL based meth-
ods always formulate object detection as Markov decision pro-
cesses (MDP), where RL agent sequentially selects the actions to
adjust the aspect ratios of input images within several steps using
action-decision strategy until triggering terminal action. An obvi-
ous advantage of above RL methods is that only a few region pro-
posals (usually no more than 10 candidates) are required for object
detection, while Convolutional Neural Network (CNN) based
approaches [3,4,9–11,13] always demand tens of thousands of
pre-computed proposals, which makes them difficult to handle
the optimal region selection. However, existing RL based object
detection methods always suffer from barely satisfactory perfor-
mance. The main reasons are that RL agent: (i) directly generates
a sequence of inaccurate regions without a reasonable reward
function, (ii) regards the non-optimal one at final step as detection
result without an effective region selection strategy, and (iii) only
adopts action space for bounding box regression in RL process.

In this paper, we propose a reinforcement learning embedded
object detection framework with region selection and refinement
network, a more accurate model integrating RL agents’ action
space with CNN-based feature space for object detection, as a
response to the aforementioned issues. The whole network con-
sists of three main components: (1) RL optimization: a novel
reward function for RL agent optimization, (2) RS-net: a region
selection network for searching the optimal region proposal, and
(3) BBR-net: a bounding box refinement network for further
regression.

(1) RL optimization: A reasonable reward function is key for RL
optimization. However, in previous works [5,6,8], IoU based
reward function focuses only on the positive/negative varia-
tion of IoU difference between adjacent regions but neglects
change magnitude, which does not make RL agent sensitive
to small changes. To handle this problem, we simultaneously
consider the IoU and Completeness of the change magnitude
between adjacent regions into reward function to effectively
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train RL agent. Particularly, Completeness is a newly-defined
evaluation metric which could measure the completeness of
target object in image. Generally speaking, it is reasonable to
assume that the RL agent can gradually enhance learning
capacity with running epoch rising. Therefore, we introduce
multiple agents rather than single agent to cover and find
the optimal region proposal of the detection results.

(2) Region selection network (RS-net): In MDP, RL agent [17]
sequentially searches for objects by utilizing both the cur-
rent observation of region image and historical search paths.
When RL agent stops search, the final-step region proposal is
treated as the detection result. However, Fig. 1 indicates that
most of the final-step region proposals are not optimal from
observing results of different RL detection methods. To han-
dle this problem, we design a novel network, namely RS-net,
to select the optimal region proposal. RS-net consists of two
sub-networks: IoU-net and CPL-net, which are responsible
for computing IoU and Completeness values of each region
proposal respectively. The predicted IoU and Completeness
values are used jointly to assess region proposals and select
the optimal one, as shown in Fig. 1-(b) and Fig. 4.

(3) Bounding box refinement network (BBR-net): Compared
with CNN based methods [9,13], standard RL based object
detection methods employ action space instead of feature
space for bounding box regression. For example, Bueno
et al. [8] employs five pre-defined actions to refine the can-
didate bounding boxes. Nevertheless, the result of region
refinement is deeply limited by the parameters of pre-
defined action space since the pre-defined actions cannot
cover the target size space. Motivated by bounding box
fine-tuning strategy adopted in two-stage object detection
Fig. 1. Comparing our work against other RL architectures. Fig. 1-(a) shows quantitative
[8], Caicedo-RL [9] and Tree-RL [7], respectively. These RL methods generate a sequence o
result. Fig. 1-(b) illustrates the detection process of our ReinforceNet. Firstly, the well-tr
and provide the accurate region proposals. At time t = 1, 2, 3 and 4, it transforms the prev
(violet, blue, yellow and green boxes) respectively. Then, the designed RS-net is respon
proposals. Finally, the proposed BBR-net further refines the optimal one as the detection
methods.
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architectures [9,13], we design a bounding box refinement
network (BBR-net) that integrates both action space and fea-
ture space for further regression. Specifically, we recurrently
exploit CNN backbone for extracting the local feature maps
of the proposals selected from RS-net and simultaneously
employs them into RL framework for training BBR-net. This
strategy provides a more complementary mechanism to har-
ness the inaccurate object location problems.

The major contributions of this paper are as follows:

(1) A novel reinforcement learning based object detection net-
work, namely ReinforceNet, is proposed. ReinforceNet pos-
sesses the capability of the region selection and refinement
by integrating RL agents’ action space with CNN-based fea-
ture space.

(2) We redevelop an IoU and Completeness jointly guided
reward function, which makes RL agent sensitive to small
change magnitudes between adjacent regions. Besides, we
replace the single agent with multiple agents, which enrich
the expressiveness of our object detection framework.

(3) Extensive experiments on PASCAL VOC 2007 and VOC 2012
object detection benchmarks demonstrate the superior per-
formance of our ReinforceNet compared to state-of-the-art
methods.

2. Related work

CNN based Detector The leading approaches in object detection
are currently CNN-based deep detectors, which can be summarized
as two-stage [9,23,24] and single-stage detectors [10,11]. For
aeroplane detection results with IoU values from different methods: Hierarchical-RL
f inaccurate regions and regard the non-optimal one at the final step as the detection
ained RL agent sequentially takes appropriate actions to transform the input image
ious window (input image, dashed-line violet, blue and yellow boxes) to a new state
sible for effectively selecting the optimal region (yellow box) from all the region
result. It can be clearly seen that our ReinforceNet outperforms the state-of-the-art
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two-stage detector, the pioneer work R-CNN is reported in [13] by
combining external region proposal module and a region-wise
classifier to formulate object detection. Although this method
appears promising robustness for object detection, its extensive
computational cost to obtain region proposals by Selective Search
algorithm [14] ensures that the detector is not applicable in reality.
To relieve redundant computation of convolutions, the developed
SSP-Net [25] and Fast R-CNN [26] extract feature of region propos-
als from shared full-image feature maps generated by CNN back-
bone. As Fast R-CNN has enhanced the bottleneck of redundant
computation, the detector is still not trained end-to-end. Later, to
handle this problem, Faster RCNN [9] introduces a fully convolu-
tional network, Region Proposal Network (RPN), which exploits
attention mechanism to tell Fast RCNN where to look. In addition,
RPN generates high-quality sparse RoIs and further improves the
performance. We note that there is a second kind of detectors,
e.g. YOLO, RetinaNet and SSD [10,11,23]. Unlike the first two-
stage detector, the second is not based on region proposals. While
their performances in runtime have long trailed behind those of
two-stage detectors, the two-stage detector can be adapted to a
wide range of requirements on accuracy.

Reinforcement Learning based Detector It is worth noting
that RL based object detection methods are more related to our
ReinforceNet. Caicedo et al. [6] design an active object detection
model, which applies Deep Q-learning Network [15] to learn
action-decision policy to search target until triggering terminal
action, and obtains comparative results with RCNN. Then Bueno
et al. [8] propose a top-down hierarchical search strategy with five
actions, where a trained agent only focuses on regions with ade-
quate object information and then narrows down the local regions
for further search. However, the above method only detects a fixed
number of objects. To overcome this issue, Yang Li et al. [12,18] use
restricted Edge Boxes [19] to get more appropriate high-quality
candidate boxes through the prior knowledge, which achieves high
accuracy and recall. Furthermore, aforementioned methods adopt
IoR (inhibition-of-return) mechanism to attend multiple object
detection problem. In addition, Ba et al. [22] introduce a deep
recurrent attention model (RAM) to recognize multiple objects,
which trained with RL. Then, the developed clued RAM [25] pro-
poses to add clue or constraint to guide RL agent quickly search
the zooms including object, which speeds up detection and
achieves better performance. Recently, Chen et al. [21] exploits
Fig. 2. Technical pipeline of our proposed ReinforceNet. Firstly, input images are fed int
actions to locate the object by observing feature maps and simultaneously output a set of
select the optimal region proposal. Finally, BBR-net is responsible for further refining th
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LSTM network to sequentially capture contextual dependencies
for locating attentional regions related to different semantic
objects, which obtains off-the-shell results. Recently, there have
witnessed several reinforcement learning based works in efficient
object detection [32,33,37], weakly supervised object detection
[34] and object segmentation [35,36]. [32] proposed low and high
spatial resolution dual-road reward to efficiently train RL agent,
which adaptively selects the spatial resolution of each image. Com-
pared with previous work that the detector is applied to each part
of large image, it greatly increases run-time efficiency. Instead of
adopting hand-crafted frame sampling strategies, Wu et al. [33]
effectively employed multi-agent to reformulate frame sampling
as multiple parallel Markov decision processes. The work in [34]
focused on weakly supervised object detection by exploiting
image-level annotation to generate pseudo target region, which
was further processed as initial location for further detection.
[35] firstly introduced reinforcement learning for video object seg-
mentation and adopted RL agent to provide object and context box,
which then fed into followed fully convolution network for seg-
mentation. [36] proposed a multi-agent object segmentation
method by combining user feedback and gamification strategy to
obtain promising performance. [37] used YOLO-V3 to fast provide
region proposals and then integrated multi-agent system with
Independent Q-Learners (IQL) for object tracker.
3. Material and methods

3.1. ReinforceNet model

In this section, we will present our ReinforceNet, a novel rein-
forcement learning embedded object detection framework. In
detail, the complete technical pipeline is depicted in Fig. 2 and
composed of three main parts: (i) multiple RL agents for jointly
generating more accurate region proposals, (ii) RS-net for selecting
the optimal region proposal, and (iii) BBR-net for refining the opti-
mal one as the detection result. All the above parts will be illus-
trated in the following sub-sections.
3.1.1. RL agent
In ReinforceNet, RL agents are responsible for generating region

proposals as shown in Fig. 2. Specifically, our RL agents rely on
o CNN backbone to obtain feature maps. Secondly, RL agents execute a sequence of
region proposals. Subsequently, RS-net including IoU-net and CPL-net is exploited to
e optimal one as the result.
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pre-trained Vgg16 model [21,24] as backbone architecture, as this
kind of model enjoys powerful feature extraction advantage. Given
an input image, it can directly provide feature maps linked to our
RL agents to generate region proposals at hand. In our work, our
multiple RL agents are DQN framework, whose input (namely state
in MDP) contains two parts: feature vector of current region image
and taken action history vector. Furthermore, the output of DQN is
the expected estimation of accumulated reward value of each
action for given state. In the test phase, the well-trained RL agent
uses greedy policy to select and execute the action with maximal
reward and generates region proposals, as shown in Fig. 3.

Specifically, while testing an image, the whole image is fed into
vgg16 backbone to obtain feature vector at first. Then feature vec-
tor concatenates history action vector as state, where history
action vector represents taken action sequence. Next, a well-
trained RL agent observes state to samples action space by
action-decision policy and then implements actions to transform
current image as corresponding aspect ratio sub-region. Finally,
obtained sub-region continue to perform above process until ter-
minal action is triggered. All above sub-regions are collected
together as region proposals.
3.1.2. RS-net
The aim of RS-net is to select the optimal region from the region

proposals by two sub-networks: IoU-net and CPL-net (as illus-
trated in Fig. 4). The two sub-networks jointly model a discrimina-
tive region selection and are to be aligned at the corresponding
region proposals within the image. For instance, Fig. 4 shows the
detailed optimal region selection process of RS-net for airplane
image. Given the candidate region proposals provided by RL
agents, the IoU-net and CPL-net give out IoU and Completeness
values for each region respectively, which are drawn as the green
and blue line. Then the red line is obtained by computing ICPL in
Eq. (4). The time step region corresponding to the peak of red line
is optimal one.

IoU-net: In Figs. 2 and 4, RL agents generate various size of
region proposals for each image. To match input of IoU-net, each
region proposal is firstly resized as 224 � 224 resolutions regard-
less of its aspect ratio, and then it is fed into Vgg16 backbone to
obtain the corresponding feature maps. The feature maps are car-
ried into 4-layer fully connected layers for the IoU prediction.
Fig. 3. Illustration of the sequential decision-making based regio
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As for IoU-net training, we collect training samples by employ-
ing well-trained RL agents to transform iteratively the initial
bounding boxes (which are the whole image) on PASCAL VOC
2007 and 2012 dataset. Meanwhile we introduce ground truth to
calculate label for each region proposal, which is IoU in Eq. (1).

Assume that number of collected samples is N, the IoU between
each region proposal bi, i 2 1; � � � ;Nf g and its ground truth bound-
ing box gi, is defined as:

IoUi ¼ ðbi \ giÞ=ðbi [ giÞ ð1Þ

where bi \ gi and bi [ gi is intersection and union of b and g at math-
ematic, respectively. To optimize IoU-net, we adopt smooth-L1 loss:

lossIoU�net ¼ �1
n

Xn
i¼1

smooth� L1ðIoUðbi \ giÞÞ ð2Þ

where n is the number of batch size. It is not hard to find out that
the IoU values of region proposals are unevenly distributed as
shown in Fig. 5-(a), thus resulting in a terrible predictor. To solve
this problem, we design the following training process: (1) Firstly,
we remove from this candidate region set the bounding boxes hav-
ing an IoU less than 0.3 with ground truth. (2) Secondly, we rank the
screened candidate region set by IoU and then spilt them into 7
zooms. Next, we uniformly sample a batch of region proposals from
each zoom to train IoU-net. (3) Labels transformation: finally, we
transform IoU labels with 2 � IoU-1 operation so as to maintain
sample labels for obeying standard Gauss distribution with mean
0. This data generation process empirically brings better perfor-
mance and robustness to the IoU-net.

CPL-net: The second sub-network to compute Completeness
jointly considers the change magnitude of adjacent regions in an
optimization problem.

In Fig. 5-(b), experiments show that Completeness of each
region proposal gradually decreases in chronological order and
region proposal set has an uneven distribution, and most of Com-
pleteness values of regions cluster around 0.7. For training CPL-
net, we manually generate samples by well-trained RL agents
and then assign label (which is Completeness in Eq. (3)) to each
sample.

Assume that number of collected samples is M, the complete-
ness between each region proposal bj, j 2 1; � � � ;Nf g and its ground
truth bounding box gj, is defined as:
n generation process of single reinforcement learning agent.



Fig. 4. Complementary roles of the IoU-net and CPL-net for searching optimal region proposal.
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CPLj ¼ ðbj \ gjÞ=gj ð3Þ

where bj \ gj s intersection of b and g at mathematic. To optimize
CPL-net, we also adopt smooth-L1 loss. Specifically, as for CPL-net
training, we manually generate training samples by this way:
Firstly, we execute the similar operation as IoU-net by using RL
agents to generate sequential candidate boxes as part of training
set. To handle sample imbalance, we manually construct some
regions by random cropping the initial image and then select
regions with Completeness less than 0.6 with ground truth. To bet-
ter train CPL-net, we use the similar sampling policy as IoU-net.

In order to select optimal region, we fuse the output of IoU-net
and CPL-net by the following operation:

RS� net ¼ max k ¼ 1;2; � � � ;C
h ¼ 1;2; � � � ;D

fICPLjICPL ¼ IoU kð ÞðhÞ � CPL kð ÞðhÞ

ð4Þ
where C is the number of agents and set to 3 in our work, D is the
number of region proposals and less than 10, which depends on the
number of candidate regions of each image.

3.1.3. BBR-net
As clearly declared above, the RS-net, including IoU-net and

CPL-net, is designed to select the most appropriate region proposal.
Though the RS-net relieves the issue that current RL-based
Fig. 5. Illustration of IoU and Completen
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methods regard the non-optimal one at the final step as the detec-
tion result for lack of an effective region selection strategy, the out-
put from RS-net is not satisfactory. Consequently, followed by RS-
net, we propose an additional BBR-net to further improve the per-
formance. So the agent cannot terminate its sequential decision-
making process at the proposal selected by the IoU-net and CPL-
net.

BBR-net is proposed to refine the optimal region selected by RS-
net. Specifically, BBR-net consists of five fully connected layers
[20], where the first four and final layers are used for feature
reduction and bounding box regression, respectively. However,
there is a conflict between the arbitrary size of region proposals
and fixed-dimensional input layer of BBR-net. Different from Faster
RCNN that exploits RoI pooling layer to resolve it, our proposed
ReinforceNet treats arbitrary size of region proposals by resizing
them as common 224� 224 resolutions, which possesses an obvi-
ous advantage for cropped small object region to obtain informa-
tive representation. As shown in Fig. 2, the optimal yellow box is
firstly cropped from the whole image and then resized as
224� 224 resolutions. Next, we feed the resized yellow box into
Vgg16 backbone, which pre-trained on ImageNet dataset to extract
feature maps. At the last, the more precise red box is predicted by
BBR-net from observing the obtained feature maps.

In addition, to relieve the distribution difference between train-
ing and testing dataset, as for BBR-net training, we elaborately con-
struct training samples in two ways: firstly, we forward the
ess distribution of region proposals.
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PASCAL VOC 2007 and 2012 training set into RL agent to generate
region proposals. Secondly, we introduce ground truth to calculate
IoU of each region in each image. Finally, we select the region (1)
with maximal IoU value and (2) having IoU value more than 0.4
to form training set. To maintain the translation and rotation
invariance, we transform the supervised coordinates correspond-
ing to each region in training set as similar to [13]. Moreover, we
introduce smooth-L1 loss [9] to optimize BBR-net to obtain better
results.

3.2. ReinforceNet optimization

Essentially, region proposals have been thought of as a key fac-
tor for object detection. To this end, we redevelop a reward func-
tion to optimize RL agent for generating more accurate region
proposals, which deeply prompts follow-up selection and regres-
sion task. Moreover, since using a single agent to provide region
proposals may obtain satisfactory results, it only achieves a subop-
timal solution. Thus, we integrate multiple RL agents jointly to
enrich expressiveness of object detection.

3.2.1. Reward function
Formally, MDP is made up of three key components: pre-

defined action set, fixed-dimensional state and reward function.
In this work, state space follows similar definition as [8] and action
space is expanded with two novel actions of horizontal and vertical
suppression by 0.7 times. The two increased actions may relieve
the incompleteness problem of detection results. All the actions
are descripted in Fig. 3, which are divided into two classes, i.e.,
transformation action to move image region and terminal action
to stop search process.

As for transformation action, this kind of reward function
should reflect the performance change of state transition. The
reward function is shown as bellow:

Ra st ; stþ1ð Þ ¼ r þ bIoU st ; stþ1ð ÞCPL st ; stþ1ð Þ � ktIoU st ; stþ1ð Þ > 0
�r � bIoU st ; stþ1ð ÞCPL st; stþ1ð Þ � ktIoU st ; stþ1ð Þ < 0

�

ð5Þ
Where:

IoU st ; stþ1ð Þ ¼ IoU stþ1ð Þ � IoUðstÞ ð6Þ

CPL st; stþ1ð Þ ¼ CPL stþ1ð Þ � CPLðstÞ ð7Þ
and we clearly find out CPLðst; stþ1Þ � 0 by considering Eq. (3) and
pre-defined action space in our work. Where the first term is rele-
vant to IoU and we set r as 1. When the transformation is good (that
means the IoU increasing), the obtained value is positive 1, and in
contrast negative �1. The second term shows the change magni-
tude of IoU and Completeness. When the change is sharp largely,
the term value is bigger. The third term is a punish factor to speed
the running process of RL agent. As for the terminal action, the cor-
responding reward function follows similar setting as [6,7], except
that the reward value is set to 5. Once this action is taken, the agent
would stop search process.

3.2.2. Multiple agents
It is reasonable that the RL agent can gradually enhance learn-

ing capacity with the training epochs rising. In previous works
[1,2,5–7], researchers used to fix a single epoch agent for testing.
While the previous methods obtain promising performance, the
fixed single agent methods to select region proposals may only
achieve a suboptimal solution.

As seen in [8], the precision of the 50th epoch is obviously lower
than the 45th epoch at recall more than 0.3. To solve the issue, we
introduce multiple agents to search optimal region in more exten-
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sive space. In detail, we employ multiple agents jointly to generate
region proposals and then use RS-net to select the optimal one over
all the region proposals.

By conducting numerous experiments, we find out a phe-
nomenon that the capacity of agent is not necessarily increased
with the training process proceeding and each epoch agent
expresses different sensitivity for different scale object. To this
end, we integrate multi-epoch agents to search more appropriate
region proposal for different scale of object. Because the multiple
agents come from different epochs in the same training process,
the agents commonly make different decisions.

In addition, to balance the computation cost and the perfor-
mance improvement leaded by multiple agents, we implement
model-pruning strategy [27] to decide which epoch agents are
selected by ranking the accuracy of the last 15 epochs on PASCAL
VOC 2007 validation set. Ultimately, from experiments, we find
out that the agents of 39th, 45th, 50th epoch are appropriate for
jointly generating region proposals in a compromise way. The
region generation process of multiple RL agents is described in
Eq. (4).
4. Results and discussion

4.1. Experiment setting

All the experiments in this section are conducted on two
widely-used object detection benchmark datasets, i.e., PASCAL
VOC 2007 [29] and 2012 [30], which both consist of 20 categories.
Because the ground truth annotations of VOC 2012 testing set have
been not released publicly, we elaborately design two sets of
experiments. 1) ReinforceNet is trained on the union of the 2007
and 2012 training-validation set, and tested on VOC 2007 testing
set; 2) ReinforceNet is trained with VOC 2012 training set and
tested on VOC 2012 validation set. We extract features to represent
all region proposals with the fully convolutional backbone archi-
tecture Vgg16 whose model is pre-trained on ImageNet [16,28].
Specifically, we use 50 epochs, as advised by the authors of prior
works [8], to train RL agent with �-greedy policy. We also set
b ¼ 0:01 and k ¼ 0:001 in Eq. (5) to stabilize and speed up training
process. In addition to mAP metric, results are reported with mean
IoU metric [31], to thoroughly evaluate the effects of proposed
improvements. We use Keras framework with GTX TITAN X GPU
for implementation.

4.2. Performance comparison

In this section, we present comprehensive experiments to
demonstrate the effectiveness of our proposed ReinforceNet by
qualitative and quantitative analysis. We test the prototype rein-
forcement learning based Hierarchical-RL detector [8], Caicedo-
RL detector [6], and Tree-RL detector [7], Multitask-RL detector
[10], Multistage-RL detector [38], Parameterized-RL detector [39],
Stefan-RL detector [40] for comparison in Section 4.2.1. Addition-
ally, we also choose the typical VGG-based Faster R-CNN detector
[9], YOLO detector [10] and SSD detector [38] to compare with
our model in Section 4.2.2. All the detectors use VGG16 as CNN
backbone for fair comparisons. Furthermore, we adopt the best
results reported in the original literature for comparison.

4.2.1. Performance comparison with RL-based methods
Average Precision performance: Tables 1 and 2 clearly illus-

trate Average Precision (AP) per category of following methods
including our proposed ReinforceNet, Tree-RL, Hierarchical-RL,
Caicedo-RL, Multitask-RL, Multistep-RL, Parameterized-RL, Stefan-
RL on PASCAL VOC 2007 testing and 2012 validation set. It is inspir-



Table 1
Average Precision (AP) per category on the PASCAL VOC 2007 testing set. ‘‘M”, ‘‘C” and ‘‘B” represents the component of multiple agents, CPL-net and BBR-net respectively.
‘‘ReinforceNet minus X”(X 2 fM;C;Bg) indicates that the corresponding components are removed from ReinforceNet.

Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

Caicedo-RL 55.9 61.9 38.4 36.5 21.4 56.5 58.8 55.9 21.4 40.4 46.3 54.2 56.9 55.9 45.7 21.1 47.1 41.5 54.7 51.4 46.1
Hierarchical–RL 28.3 30.1 24.1 20.6 17.3 31.0 28.3 44.4 17.8 15.1 30.0 37.6 33.9 36.0 41.1 19.1 11.3 40.8 38.6 15.7 28.1
Multitask-RL 59.2 62.3 40.2 41.2 24.1 59.5 67.1 55.6 24.1 64.1 50.2 54.1 57.1 54.7 46.5 29.4 48.5 44.2 54.1 35.9 48.6
Multistage-RL – –- –- –- –- –- –- –- –- –- –- –- –- –- –- –- –- –- –- –- 40.7
Tree-RL 71.2 82.4 72.0 62.3 50.4 80.0 79.3 83.4 57.8 79.3 72.0 82.7 83.3 77.2 77.2 44.4 76.4 76.5 82.2 71.5 73.1
Parameterized-RL 76.7 82.1 74.3 65.1 52.4 80.4 80.9 85.3 56.5 80.2 72.5 83.1 83.5 76.1 77.4 42.6 77.4 75.0 81.8 70.1 73.6
ReinforceNet minus M/C/B 51.7 45.2 57.4 52.9 40.5 53.2 63.5 55.4 48.3 55.9 61.0 62.4 66.2 57.4 55.8 34.3 50.1 45.1 57.1 44.7 53.4
ReinforceNet minus M/C 73.2 78.8 71.2 62.1 50.1 77.7 79.1 83.5 54.7 77.8 70.6 78.6 81.3 71.8 73.1 39.8 68.0 67.4 79.7 67.2 70.3
ReinforceNet minus M 74.9 80.3 73.0 63.7 51.8 79.5 80.3 84.2 55.3 79.5 71.2 81.1 82.0 74.7 75.5 41.1 72.1 70.8 80.6 69.4 72.0
ReinforceNet 76.5 82.0 74.8 65.2 52.3 80.8 81.1 85.7 56.6 80.3 72.4 83.2 83.4 76.3 77.1 42.2 77.3 74.8 82.4 70.2 73.7

Table 2
Average Precision (AP) per category on the PASCAL VOC 2012 validation set.

Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

Hierarchical–RL 48.5 39.8 24.1 35.1 19.8 50.1 26.6 63.0 20.5 31.0 30.0 49.1 42.4 51.3 50.4 13.6 22.1 33.2 44.6 12.3 36.0
Stefan-RL 47.4 31.4 21.0 9.5 2.5 44.7 19.4 50.3 6.1 18.1 21.1 46.8 35.8 40.4 18.7 8.5 17.8 18.6 41.5 38.8 27.0
ReinforceNetminus M/C/B 72.4 67.3 56.5 35.4 32.1 55.2 53.6 80.7 31.6 56.8 61.0 71.9 71.8 52.1 53.4 38.8 59.4 50.8 72.5 51.3 55.1
ReinforceNet minus M/C 80.6 75.7 67.0 46.4 46.2 73.5 69.5 84.1 41.4 60.1 70.6 80.2 73.6 77.8 78.4 39.8 67.6 56.4 75.9 58.4 65.3
ReinforceNetminus M 81.7 78.8 70.9 47.5 48.3 76.1 68.6 84.7 43.2 60.9 71.2 83.7 75.4 80.3 78.9 41.2 68.1 60.3 76.2 65.7 67.3
ReinforceNet 82.1 79.7 71.2 49.2 50.7 78.7 70.4 85.0 44.3 61.5 72.4 84.4 76.1 81.2 80.1 41.4 69.2 63.2 77.4 67.2 68.4
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ing to observe that the performance of our ReinforceNet obviously
outperforms state-of-the-art methods. Compared with existing RL-
based detectors on VOC 2007, our method improves mAP by 45.6
points than Hierarchical-RL, 27.6 points than Caicedo-RL, 0.6
points than Tree-RL, 25.1 points than Multitask-RL, 33 points than
Multistep-RL and 0.1 points than Parameterized-RL respectively.
Besides, our method outperforms Stefan-RL by 41.4 points on
VOC 2012 and Hierarchical–RL by 32.4 points on VOC 2012. Specif-
ically, the large improvement of our method is attributed to the
developed reward function for optimizing RL agent better to select
more appropriate actions and the additional BBR-net for further
regression. In addition, we expand the action space of
Hierarchical-RL, thus fitting the aspect ratios of targets better.

Mean IoU performance: Tables 3 and 4 shows mean IoU per
category of Hierarchical-RL, Faster R-CNN and our proposed Rein-
forceNet on PASCAL VOC 2007 testing and 2012 validation set,
respectively. The mean IoU measures the overall degree of close-
ness between the ground truth and detection results. It can be seen
that ReinforceNet outperforms Hierarchical-RL with a lager margin
by 36.5 points and 29.6 points on PASCAL VOC 2007 testing and
2012 validation set, respectively. That is because the developed
reward function makes RL agent sensitive to small change and
the well-trained RL agent generates more optimal region propos-
als. Furthermore, BBR-net takes advantage of both action space
and feature space for further refining the region proposals, which
obtains higher mean IoU. Compared with Faster RCNN, our Rein-
forceNet obtains 1.6 and 0.2 points improvement on PASCAL VOC
2007 testing and 2012 validation set, respectively.
Table 3
Mean IoU per category on the Pascal VOC 2007 testing set.

Method aero bike bird boat bottle bus car cat chair c

Hierarchical–RL 38.1 36.1 30.5 29.4 21.6 38.1 30.0 45.1 22.6 2
Faster RCNN 65.5 68.7 59.6 55.9 50.9 71.8 68.7 74.0 51.8 6
ReinforceNetminus M/C/B 49.2 40.5 48.2 48.6 43.1 49.2 40.7 46.4 47.7 4
ReinforceNet minus M/C 67.4 65.4 61.0 54.1 49.7 66.7 66.3 72.4 52.1 6
ReinforceNetminus M 70.3 67.7 62.6 54.2 50.5 71.7 66.2 74.2 53.8 6
ReinforceNet 72.1 70.1 63.3 55.3 51.3 72.8 70.2 74.8 54.5 6
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4.2.2. Performance comparison with CNN-based methods
RL-based object detection methods are different from CNN-

based methods. The RL-based methods formulate object detection
as Markov decision process and might search the detected objects
in several steps, while CNN-based methods often demand to ana-
lyzing tens of thousands of pre-computed proposals. In the field
of non-dense object detection, the RL-based methods are more
effective than CNN-based methods. As for our ReinforceNet, the
main contribution is the improved pipeline of Markov process.
The thought of selecting optimal region proposal might motivate
other RL-based applications, like RL-based image cropping [1],
image denoising [41], image Restoration [42]. The comparison per-
formance with CNN based methods are illustrated in Table 5. As
can be seen clearly, our ReinforceNet is superior to promising Fas-
ter R-CNN based on shallow Vgg16 backbone, which turns out rein-
forcement learning agent is powerful to generate high-quality
object proposals with shallow feature extraction. And our method
outperforms YOLO by 10.3 points and obtains comparable perfor-
mance with SSD. Our RL based method has a good trade-off in
detection accuracy (AP) and computational cost (number of region
proposals required). Therefore, we believe that our method owns
its high research value and advantages to SOTA object detection
approaches.

4.2.3. Visualizations comparison
As shown in Figs. 6 and 7, we present some detection results

comparison between our ReinforceNet and reinforcement learning
based state-of-the-art methods as well as promising Faster RCNN
ow table dog horse mbike person plant sheep sofa train tv mIoU

3.7 37.6 38.5 41.9 39.5 36.6 26.3 21.3 42.8 42.0 24.7 33.3
6.7 62.9 71.5 72.4 68.7 67.0 54.4 63.0 69.8 71.7 68.1 65.2
7.8 55.7 50.3 55.1 51.3 54.3 41.0 45.1 54.8 54.0 37.2 48.0
4.8 58.1 68.1 70.2 63.2 58.5 56.4 59.2 65.0 69.8 59.4 62.4
5.2 62.8 68.3 71.1 65.2 62.1 61.5 62.0 69.1 70.3 62.9 64.6
9.8 65.9 69.4 76.8 67.4 65.3 65.6 65.1 69.8 72.0 65.1 66.8



Table 4
Mean IoU per category on the PASCAL VOC 2012 validation set.

Method aero bike bird boat bottle bus car cat chair Cow table dog horse mbike person plant sheep sofa train tv mIoU

Hierarchical–RL 45.3 41.1 29.1 36.3 18.7 46.2 27.2 56.2 25.4 33.7 36.5 45.7 43.6 47.1 46.8 13.3 25.3 37.1 45.6 13.2 35.7
Faster RCNN 67.3 70.7 60.0 56.0 52.7 73.0 63.9 74.1 56.7 66.6 64.6 74.7 73.2 71.6 65.7 53.7 63.3 58.6 70.4 65.8 65.1
ReinforceNetminus M/C/B 57.7 61.5 56.3 40.3 27.4 47.2 43.3 67.1 36.7 52.1 44.2 63.4 64.7 55.2 64.1 47.9 49.7 50.1 62.8 56.7 52.4
ReinforceNet minus M/C 65.1 69.8 62.3 51.7 45.6 68.8 56.2 68.9 47.6 59.3 62.0 69.7 68.5 66.6 65.5 51.2 59.6 57.3 66.7 58.6 61.0
ReinforceNetminus M 67.0 71.1 65.6 53.8 48.5 70.1 58.0 71.7 53.1 65.8 62.3 71.3 70.8 69.3 67.3 53.0 61.4 55.8 68.4 62.4 63.3
ReinforceNet 67.6 73.0 67.2 54.6 49.6 72.3 63.6 76.0 54.8 66.9 63.1 72.8 72.4 72.7 71.0 53.8 62.5 57.6 69.1 65.1 65.3

Table 5
Average Precision (AP) per category on the PASCAL VOC 2007 testing set.

Method VOC 2007 Region proposal number

Faster RCNN 73.1 ~2K
YOLO 63.4 –
SSD 74.3 –
ReinforceNet 73.7 ~50
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on Pascal VOC 2007 and VOC 2012 respectively. The red boxes rep-
resent the detection results of our ReinforceNet. The green boxes
indicate the optimal region selected by our RS-net. The yellow
and blue box show the detection results of Hierarchical–RL and
Faster R-CNN respectively. It can be clearly seen that our proposed
ReinforceNet outperforms state-of-the-arts.
4.3. Ablation studies

In this section, we conduct a series of ablation studies on the
PASCAL VOC 2007 testing and 2012 validation set to analyze the
importance of each component.

Ablation Studies on RS-net: Ablation studies of RS-net are
shown in Table 6 in terms of mAP. RS-net consists of two sub-
networks, i.e., IoU-net and CPL-net. The two sub-networks are
jointly utilized to select optimal regions, where IoU-net is domi-
nant and CPL-net is auxiliary.

IoU-net: In the Table 6, it is clearly observed from the first two
rows that IoU-net brings 12.0 and 6.7 points higher AP than the
baseline on VOC 2007 and 2012 respectively, thus implying the
effectiveness of IoU-net. This is in line with conclusion that the
Fig. 6. Comparison of detection results between our
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candidate regions in the final step are not necessarily optimal
and IoU-net is key for selecting optimal region for object detection.

CPL-net: Considering the fourth and fifth rows, CPL-net
improves AP from 70.3 to 72.0 and 67.4 to 71.3, which validate
the effectiveness of CPL-net. Specifically, the reason is that the
more complete region proposals are easily refined to ground truth,
as descripted in Fig. 8.

Ablation Studies on BBR-net: Considering the effect of BBR-
net, we can focus on the third and fourth rows of Table 6. Along
with BBR-net, the results are further improved from 53.4 to 70.3
and 55.8 to 67.4 on VOC2007 and 2012 dataset, respectively, which
indicates the BBR-net is key for increasing localization
performance.

Ablation Studies on multiple agents: Ablation Studies on mul-
tiple agents are shown in the last row of all the tables. Specifically,
in the Table 5, multiple agents bring 1.7 and 1.6 points higher
boxes mAP than the single agent baseline on VOC 2007 and 2012
respectively.
5. Conclusion

In this work, we have presented a general RL based object
detection framework with RS-net and BBR-net. The RS-net allows
us to select the optimal region of the target with combination of
IoU-net and CPL-net. We state that this framework is applicable
for finding more appropriate region proposals since it can compute
IoU and Completeness values of each region proposal effectively in
practice. For further refining the optimal region from RS-net out-
put, we introduce the BBR-net to converge the optimal region to
ground truth. This leads to a significant improvement of the perfor-
mance for object detection. In addition, an IoU and Completeness
integrated reward function is proposed to improve the efficiency
ReinforceNet and other methods on VOC 2007.



Table 6
Effects of each component on our ReinforceNet. Results are measured with AP.

Novel reward IoU-net CPL-net BBR-net Multiple agents VOC 2007 VOC 2012

28.1 36.0p
40.1 42.7p p
53.4 55.1p p p
70.3 65.3p p p p
72.0 67.3p p p p p
73.7 68.4

Fig. 7. Comparison of detection results between our ReinforceNet and other methods on VOC 2012 validation set.
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of agent learning online. With this RL strategy, the detection model
has a richer expressiveness to tackle inaccurate object location. We
implement our ReinforceNet together with the promising methods
Fig. 8. Illustration of th
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on widely-used PASCAL VOC 2007 and VOC 2012 object detection
benchmarks. The empirical results show that our ReinforceNet
achieves state-of-the-art performance.
e effect of CPL-net.
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