
ORIGINAL ARTICLE

Learning region-guided scale-aware feature selection for object
detection

Liu Liu1,2 • Rujing Wang2 • Chengjun Xie2 • Rui Li2 • Fangyuan Wang1,2 • Man Zhou1,2 •

Yue Teng1,2

Received: 8 May 2020 / Accepted: 24 September 2020
� Springer-Verlag London Ltd., part of Springer Nature 2020

Abstract
Scale variation is one of the major challenges in object detection task. Modern region-based object detection architectures

often adopt Feature Pyramid Network (FPN) as feature extraction neck to achieve multi-scale feature representation in

solving scale variation problem. However, due to the rough feature selection strategy in Region of Interest (RoI) feature

extraction step, these methods might not perform well on object detection under strong scale variation. In this work, we are

motivated by the limitations of current FPN-based two-stage object detectors and then present a novel module, namely

scale-aware feature selective (SAFS) module, that flexibly and adaptively selects feature levels in two-stage object

detectors. Specifically, we firstly build the RoI Pyramid in standard FPN structure to extract RoI features from various scale

levels. Next, in order to achieve scale-aware mechanism for solving scale variation issue, we develop a novel weighting

gate function containing one set of trainable parameters to automatically learn the fusion weight for each RoI feature level,

which relieves the limitation of hard feature selection strategy guided by online instance size. Outputs from the RoI

features with the learned weights are fused for classification and bounding box regression. Furthermore, we design a multi-

level SAFS architecture to obtain different types of RoI feature combinations that ensures our method is more robust to

various instance scales. Experimental results show that our SAFS module is very compatible with most of two-stage object

detectors and could achieve state-of-the-art results with Average Precision of 48.3 on COCO test-dev and other popular

object detection benchmarks. Our code will be made publicly available.
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1 Introduction

In modern computer vision field, Convolutional Neural

Network (CNN) has shown the high efficiency on auto-

matically extracting powerful features on various visual

tasks guided by supervised learning [1–4]. The past decade

has witnessed the superior performance when CNN is

employed in object detection architectures [5–7]. Among

these methods, two-stage approaches are fast becoming a

key instrument in generic object detection task due to its

high-quality candidate boxes outputted from Region Pro-

posal Network (RPN). Furthermore, Feature Pyramid

Network (FPN) [8], introduced as model neck component,

can play a vital role in addressing the issue of difficulty on

detecting small-scale objects. This could be explained by

the multi-scale feature representation where all the levels

contain strong semantic information through top-down

pathway and lateral connection mechanism. Intuitively,

most of the region-based architectures adopt FPN to detect

objects across a large range of scales.

However, a central issue in these two-stage object

detectors lies in handling scale variation problem [9],

which is manifested as large number of instances with

various scales (widths and heights) in one single image

simultaneously. To remedy this issue, an intuitive way is to

leverage FPN into two-stage object detectors, in which

strong evidence shows that current methods could benefit
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from FPN component in dealing with multi-scale object

detection [10]. Generally, there is an expert consensus that

objects with specific scale are supposed to be detected on

single feature level. Specifically, instances with small sizes

are expected to be featurized in low-level feature maps as

small objects’ information might vanish in high-level

semantic features with large sampling stride. Following

this consensus, standard FPN is associated with the

increasing risk of the hard feature level selection strategy,

which leads to some potential limitations. On the contrary,

lots of valuable information from the other feature levels

might be neglected when corresponding level is chosen for

RoI Align to extract RoI feature [11]. Moreover, from our

observation, R-CNN head network employed in two-stage

object detectors might not achieve satisfied region classi-

fication accuracy, while Region Proposal Network (RPN)

provides high-quality candidate boxes with high recall. In

this case, richer contextual and semantic features are

essential to obtain a better detection performance. Thus, to

solve scale variation issue, RoI feature fusion might be a

potential way to leverage the multi-scale feature pyramid

structure.

Apart from feature pyramid architecture, current

researches attempt to achieve multi-scale feature fusion

from the various aspects. Featurized image pyramid is a

common and simple strategy to address multi-scale issue,

which utilizes brute-force data augmentation during train-

ing, including scale jittering, resizing and cropping [12]. In

inference phase, Test Time Augmentation (TTA) is used to

test the input image with various sizes and obtain the final

result by combining them together [13]. Besides, it is also

feasible to design a single model with various filters for

different scales to generate the scale-aware feature maps,

which are outputted from several parallel branches

[14, 15]. To ensure the feature maps with different scales

could be extracted, each branch owns its specific receptive

field for filter. Nevertheless, due to the intra-class variance

of large-scale and small-scale instances in one image,

handling the different feature responses in a single feature

level might be unreasonable. Therefore, it is necessary to

develop a dramatic and soft feature selection and weighting

mechanism to remedy the scale-variance issue.

Motivated by the idea of feature fusion, we investi-

gate the feasibility of softly mapping and weighting

feature levels to each region proposal by developing a

novel architecture unit, termed scale-aware feature

selective (SAFS) module guided by input instances’

sizes. Our goal is to design a universal flexible and

adaptive feature level selection module deployed in most

of region-based object detection methods with feature

pyramid structure. In order to implement this function,

our SAFS module could learn to use sizes of region

proposals to adaptively emphasize more informative

features and suppress those containing noisy information

for the specific instance. The structure comparison of our

proposed SAFS with image pyramid and feature pyramid

is shown in Fig. 1, which exploit features from all the

levels rather than the multi-scale images or single feature

level. In our method, the input image is firstly processed

by a CNN backbone and FPN neck for extracting multi-

scale features in various levels. Similar to standard two-

stage object detection approaches, region proposals are

provided by standard RPN in each level. Secondly, we

build a RoI Pyramid structure that employs RoI Align

operation into all the feature levels rather than harshly

selecting the specific feature level. In this way, we could

obtain the multi-scale RoI features. Next, in order to

achieve scale-aware mechanism for solving scale varia-

tion issue, we develop a novel weighting gate function

containing one trainable parameter to learn the weights

for each RoI feature level, which address the limitation

of hard feature selection strategy by online instance size

guidance. Outputs from the RoI features with the learned

weights are fused for classification and bounding box

regression. Such the scale-aware weighting mechanism

could be regarded as a soft activation for RoI features

from different levels. Furthermore, we design the multi-

level feature selective architecture to obtain the different

RoI feature combinations that ensures our method is

more robust to various instance scales. Therefore, in this

way, SAFS module could achieve an adaptive nonlinear

mapping between input region proposal and RoI feature

levels, in which this relationship could be automatically

learned through model training.

The major contributions of this paper are as follows:

• We propose a novel feature selective module termed as

scale-aware feature selective (SAFS) module to achieve

soft RoI feature fusion and weighting guided by

instance sizes. This module is very compatible to be

deployed into most of state-of-the-art two-stage object

detectors for softly and flexibly selecting RoI features.

• Our SAFS module exploits scales of region proposals to

learn the optimal weights for different feature levels.

Besides, a novel weight gate function is designed to

improve the robustness to scale variance, which is

learned by one trainable parameter.

• The comparative and depth experiments show that

our SAFS module could help to improve the perfor-

mance of state-of-the-art methods in generic object

detection tasks, which achieves Average Precision

(AP) of 48.3 on COCO test-dev and other popular

object detection benchmarks. Our code will be made

publicly available.
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2 Related work

DeepConv object detectors Convolutional Neural Net-

work (CNN) has proved to be a predominant solution

applied in generic image identification as well as object

detection due to its effective high-quality feature extraction

in 2D static images. As one type of these approaches, one-

stage detectors target at finding the objects from the whole

feature maps directly assisted through anchors with various

pre-defined sizes [6, 16, 17]. Meanwhile, these anchors are

refined by a parallel regression layer. Considering objects

with various sizes, SSD [7] and DSSD [18] perform to find

instances at multilayers. In order to improve the detection

accuracy, RetinaNet [19] introduces a novel loss function

named focal loss to alleviate the imbalance risk of back-

ground–foreground samples. Besides, feature pyramid

structure is also employed in RetinaNet to consider both

large-scale and small-scale objects. In recent years, Refi-

neDet [20] proposes to sample and adjust the pre-defined

anchors, followed by further box refinement.

Apart from one-stage detectors, two-stage architectures,

also known as region-based methods, aim to follow an idea

of coarse-to-fine strategy. Fast R-CNN [3] introduces

Region of Interest (RoI) as region proposals for fine-tuning

classification and bounding box regression, which are

generated from feature maps by RoI pooling operation.

However, Fast R-CNN utilizes selective search [21] to pre-

compute region proposals as extra input. To solve this

problem, Faster R-CNN [22] develops Region Proposal

Network (RPN) to replace the stand-alone compute-inten-

sive method and achieves the end-to-end training as well as

inference. Based on Faster R-CNN, a large number of

region-based approaches emerge to continually improve

the object detection performance, such as R-FCN [10],

Cascade R-CNN [23] and Libra R-CNN [24].

Scale-variance solving. Scale-variance problem has

always been a serious challenge in modern two-stage

object detection methods. Image pyramid with multi-scales

is a common choice to achieve scale aware to improve

detection accuracy, especially for small-scale objects.

Among these methods, SNIP [13] proposes to only train the

specific scale instances corresponding to each image scale

but remain the time-consuming issue. Another direction is

multi-scale feature fusion, in which HyperNet [25] brutally

concentrates the features maps from low level and high

level. Nevertheless, direct feature fusion by normalization

might cause information loss. In this case, FPN [8] builds

top-down pathway and lateral connections to help infor-

mation interaction in different levels that obtains a large

improvement in small object detection. Based on feature

pyramid structure, PANet [26] and Libra R-CNN [24]

attempt to achieve further feature refinement by introduc-

ing additional paths. Moreover, with the help of dilated

convolution [27], TridentNet [15] proposes to generate

scale-specific feature maps rather than fusing them, which

achieves state-of-the-art performance.

Methods on feature selective. While most of object

detection methods try to solve scale-variance problem

through multi-level feature fusion, a few researches focus

on feature selection. FSAF [28] presents a feature selective

module deployed in RetinaNet [19] but holds an obvious

potential risk: hard feature selection strategy, which is

similar to FPN. Differently, [14] develops a scale weight-

ing approach used in pedestrian detection based on Faster

R-CNN [22]. However, this method trains two parallel sub-

networks for detecting large and small instances, respec-

tively, which results in longer inference time. In this con-

text, we design a region-guided scale-aware feature

selective module deployed in most of two-stage FPN-style

object detection methods to achieve flexible feature

selection.

pyramid.jpg

(a) Image Pyramid

pyramid.jpg

(b) Feature Pyramid (c) Our SAFS

Fig. 1 a Multi-scale images are used as input, and the image pyramid

methods perform feature extraction as well as object prediction at

each scale. b Feature pyramid methods extract multi-scale feature

maps and predict object using hard feature selection at single level.

c Our proposed SAFS structure takes multi-scale RoI features into

consideration by building RoI Pyramid and predicts by the result of

feature fusion
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3 Motivation

3.1 Scale variation problem

In this paper, we aim to solve the scale variation issue,

which is one of the major challenges in object detection

task. Specifically, scale variation appears to be an image

containing numerous instances with various sizes including

widths and heights. This size difference derives from a

large number of labelled categories in the dataset. Figure 2

illustrates the size difference phenomenon in one of the

popular object detection dataset COCO [29]. As it can be

seen, due to the specific attribute of each object class, the

widths and heights of labelled instances are unevenly dis-

tributed among these categories. This problem inevitably

results in network training being more biased toward

specific object sizes but ignoring the actual scale distribu-

tion of the whole dataset. Currently, due to the effective-

ness of feature pyramid, two-stage detectors show the state-

of-the-art performance in object detection task. Therefore,

in order to discuss the motivation of the idea of this paper,

we attempt to analyze the advantages and limitations of

current two-stage object detectors.

3.2 Rethinking Region Proposal Network

Firstly, we investigate the performance of the Region

Proposal Network in the standard Feature Pyramid Net-

work algorithm. As it is well known, the major goal of

RPN is to provide lots of high-quality region proposals that

could be adopted as potential object locations. So, here we

ignore the categories of these region proposals and treat the

region generation as a binary classification task (objectness

or non-objectness). Instead, we only focus on the recall of

their localization that indicates that how well the region

proposals cover the ground truths. Table 1 shows the

localization results of region proposals on COCO minival

subset generated by RPN using Faster R-CNN with

ResNet50 backbone. As it can be seen, there is only 35.3%

recall obtained under intersection over union (IoU) of 0.5

when maximum detection quantity is set to 10 because the

total number of objects per image is high in COCO dataset.

However, when more region proposals are selected, RPN

could provide much more correct regions that could

achieve more than 90% recall. Even with the IoU of 0.7,

still 77.7% ground truths could be well found and local-

ized. Therefore, the RPN could achieve satisfied perfor-

mance on object localization task. The provided region

proposals show a high recall rate that could cover almost

all the ground truths. Furthermore, excellent recall could be

also obtained under higher IoU threshold which indicates

that these regions are with high quality.

3.3 Rethinking R-CNN head

Apart from RPN, the second step is designing a R-CNN

head to classify and fine-tune the region proposals in two-

stage object detectors. Here, we select the top 1000 region

proposals used for classification. Note that we only focus

on the positive region samples’ classification performance

rather than all the regions because these region proposals

might contain a large number of negative samples that are

meaningless for object detection evaluation. The classifi-

cation accuracy results are illustrated in Fig. 3. As it can be

observed, the R-CNN could only correctly recognize

60.1% positive regions. Furthermore, under the increasing

classification score threshold, the accuracy dramatically

drops to less than 40%. This indicates that the high-quality

Fig. 2 Sample size distribution of instances on COCO dataset
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region proposals might not be well classified by R-CNN

head. Therefore, we can conclude that the major limitation

of current two-stage object detectors lies on the powerless

region classification performance. So, we design our SAFS

module deployed in R-CNN head of standard FPN to

relieve the scale variation issue.

4 Scale-aware feature selective module

In this section, we are going to introduce the pipeline of

proposed SAFS module in our method shown in Fig. 4,

including the RoI Pyramid, weighting gate function as well

as its optimization. Furthermore, we also introduce the

multi-level SAFS structure.

4.1 RoI Pyramid

As discussed before, one reason causing unsatisfied clas-

sification results under scale variation is the hard feature

selection strategy used in standard feature pyramid archi-

tectures. It extracts feature map by RoI Align for each

region proposal with size of w� h from the feature level

corresponding to its scale:

lðw; hÞ ¼ log2
ffiffiffiffiffiffi

wh
p

=h
j k

ð1Þ

where h is the hyper-parameter that is usually set to 32. b�c
is the floor operation. This strategy follows a well-known

expert consensus. Specifically, for the instances with small

sizes (smaller than h� h), it is more inclined to select low-

level feature maps as their RoI feature descriptors due to

the sparse information of the small instances in high-level

semantic feature maps with down-sampling. Obviously,

there is a limitation that the cross-level information might

be ignored, which is also of great value for object detec-

tion. In order to find a way to simultaneously take the

features from all the levels into consideration, we design a

RoI Pyramid structure, in which the input image is firstly

learned by standard FPN and the output is multi-scale

feature maps F ¼ ðF1;F2; . . .;FpÞ. Secondly, we adopt

RPN module into each feature level, respectively, and

collect region proposals from all the scales. Then, several

parallel RoI Align operations are applied to extract multi-

scale RoI features X ¼ ðX1;X2; . . .;XpÞ for every region

proposal by:

Xpði; j; cÞ ¼
k2

wphp

X

wpk=i

m¼x1

X

hpk=i

n¼y1

Fpðm; n; cÞ ð2Þ

where k is the output size of RoI Align. wp and hp are the

sampling sizes of region proposal in pth feature level,

which are defined as:

wp ¼ w� sp

hp ¼ h� sp
ð3Þ

sp is the down-sampling spatial stride that is represented as

(1/4, 1/8, 1/16, 1/32) in RoI Pyramid. In this way, we

could extract RoI features for region proposals in different

feature levels that contain multi-scale object information.

So, this structure is named as RoI Pyramid.

4.2 Weighting gate function

Given the multi-scale RoI features X ¼ ðX1;X2; . . .;XpÞ,
we aim to fuse these into a more powerful RoI feature.

Different from harshly summing or concatenating, a

specific weighting gate function is proposed to achieve

Fig. 3 COCO minival set classification accuracy

Table 1 Recall performance of

region proposals on COCO

minival subset

IoU 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Recall10 0.353 0.338 0.319 0.295 0.261 0.215 0.157 0.094 0.035 0.005

Recall100 0.726 0.706 0.682 0.647 0.590 0.499 0.361 0.198 0.069 0.008

Recall300 0.838 0.819 0.796 0.759 0.699 0.594 0.425 0.225 0.074 0.008

Recall1000 0.908 0.892 0.872 0.839 0.777 0.662 0.468 0.241 0.078 0.009
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scale-aware feature fusion so as to make it adaptive to the

region proposal’s size. This function could automatically

learn the weights of RoI features from different scales

rather than introducing more complex neural networks. In

our design, the weighting gate function is expected to

follow three constraints: (1) Given a instance with small

size, the weight should be more biased toward the low-

level RoI feature scales and vice versa. (2) Weighting gate

function is optimized by one trainable parameter to ensure

the flexible nonlinear mapping between input instance size

and output weights. (3) It is better to introduce fewer

parameters to avoid much computational cost.

In this context, we define our weighting gate function to

calculate the weight of pth RoI feature kp by:

kpðsp; h;wÞ ¼
e�zpðsp;h;wÞ
P

i e
�zpðsp;h;wÞ

ð4Þ

in which zp is a temporary variable that is computed by:

zpðsp; h;wÞ ¼
sign�ðh;wÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h� h0j j w� w0j j
p

spbp
ð5Þ

where b ¼ ðb1; b2; . . .; bpÞ is a trainable parameter. w and h

are the width and height of the instance. In addition,

sign�ðw; hÞ is a novel designed sign function that indicates

whether the input instance is small object or not, which is

defined as:

sign�ðh;wÞ ¼ 1 w� w0\0 and h� h0\0

�1 elsewise

�

ð6Þ

where w0 and h0 are two pre-defined hyper-parameters. As

it could be found, the instance is processed as small object

only when w� w0\0 and h� h0\0. Therefore, when the

network is fed a small instance, the zp [ 0 and zp shows a

growth trend as the level of RoI Pyramid keeps increasing,

i.e., sp reduces. In this case, the e�zp in Eq. (4) is a

decreasing function, so the weight kp for low-level RoI

feature is larger than others. On the contrary, the weight for

high level is becoming larger when the input instance is

determined to be a large object by sign�ðw; hÞ. Further-
more, due to the fact that the absolute value of zp is

computed by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h� h0j j w� w0j j
p

and bp, the weight dis-

tribution for each RoI feature scale shows a nonlinear

mapping, in which the weights are automatically learned

during training to achieve scale-aware soft feature selection

mechanism.

Finally, we could fuse the features from RoI Pyramid

and obtain the powerful feature representation ~X of region

proposals:

~X ¼
X

i
Xi � eki ð7Þ

Here, we employ the exponential weighting operation to

maintain the original RoI features as well as expand those

soft-selected levels. By combining features extracted from

RoI Pyramid with learned weights, our SAFS module could

be more robust to scale variation, which could be consid-

ered as a soft selection of different feature levels. Besides,

the fused feature map could effectively select information

that is the most suitable for R-CNN, which alleviates the

problem of weak classification performance in two-stage

object detectors.

4.3 Multi-level feature selective structure

In our weighting gate function, we design a sign function

sign�ðw; hÞ as to determine the input instance is small or

large object, in which the criterion relies on two hyper-

parameters w0 and h0 that are set manually. However, it is

difficult to generalize the single w0 and h0 into various

datasets. So, we design the multi-level feature selective

architecture apart from the proposed single level structure,

Fig. 4 Illustration of our proposed SAFS architecture. For each

instance (region proposal), we build RoI Pyramid to extract multi-

scale RoI features operating by RoI Align recurrently. The weights for

different feature levels are computed with the input of instance size

(height and width). Final feature used for classification is the result of

weighted feature fusion

Neural Computing and Applications

123



as shown in Fig. 5. In the single level method, we only

adopt one set of hyper-parameters as the criterion for

determining small instances, where the w0 and h0 are

chosen as the average width and height among all the

instances in training set:

w0 ¼ �w ¼ 1

N

X

N

b¼1

wb

h0 ¼ �h ¼ 1

N

X

N

b¼1

hb

ð8Þ

Differently, we aim to find various feature fusion strategies

in our multi-level feature selective architecture. Here, we

select three different hyper-parameter combinations for w0

and h0. Specifically, we pre-analyze the scale variations in

the whole dataset and apply an unsupervised clustering

learning [30] to find three kernels from all the labelled

instances, as shown in Fig. 6. It is obvious that most of

labelled instances are with small sizes, but the aspect ratios

of bounding boxes are widely distributed. In this way, we

could select three different types of kernels as the hyper-

parameter combinations, which also ensure the model

could take various shapes of objects into account.

4.4 Optimization

In the weighting gate function, we introduce a trainable

parameter b. Here, we will discuss their optimization

during model training. Firstly, we apply neural network

chain derivation strategy [32] to compute the gradient for

b. Because that bp participates the weight computation of

all the feature levels, the gradient of bp is also from two

situations. When p ¼ i, the gradient of ki to bp is:

oki
obp

¼ zpe
�zp
P

i e
�zi � zpe

�zi e�zp

bpð
P

i e
�ziÞ2

¼ zpe
�zp

bp
P

i e
�zi

ð1� e�zi

P

i e
�zi

Þ
ð9Þ

The other situation is when p 6¼ i, the gradient is computed

by:

oki
obp

¼ � zpe
�zi e�zp

bpð
P

i e
�ziÞ2 ð10Þ

Therefore, we could obtain the final gradient of training

loss to bp by summing them up:

Fig. 5 Illustration of multi-level scale-aware feature selective mod-

ule. We design three parallel SAFS modules with different hyper-

parameters to fuse RoI features from various scales in RoI Pyramid.

Final detections from multiple SAFS branches will be combined by

non-maximum suppression (NMS) [31]. The RPN and R-CNN heads

are shared with other two-stage object detectors and ignored for

simplicity in this figure

Fig. 6 Height and width cluster result of instances on COCO dataset.

Note that part of labelled instances’ sizes is shown here for the best

view
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oL

obp
¼
X

i

oL

oki

oki
obp

 !

¼
X

p¼i

oL

oki

oki
obp

 !

þ
X

p 6¼i

oL

oki

oki
obp

 !

ð11Þ

Finally, given the gradient of bp, the automatic training of

the parameter could be achieved by back-propagation with

learning rate g by:

bp ¼ bp � g
oL

obp
ð12Þ

Table 2 Ablative experiments

for the SAFS on the COCO

minival set

Method RoI feature Single level Multi-level AP AP50 AP75 APs APm APl

Baseline Hard selection 36.4 58.4 38.9 21.0 38.9 45.3

SAFS Sum U 36.8 58.7 39.1 21.1 39.2 45.4

Concat U 36.7 58.4 38.7 20.8 39.8 45.0

Soft selection U 36.9 58.5 39.6 21.6 40.3 47.6

Soft selection U 37.2 59.1 39.7 22.2 40.4 47.9

Best results of our own methods comparing to others are highlighted in bold

The baseline is Faster R-CNN with FPN method, and SAFS is also deployed in this approach. ResNet-50

[35] is the backbone network for all experiments in this table

Table 3 State-of-the-art comparison on MS COCO test-dev set [29]

Method Backbone AP AP50 AP75 APs APm APl

YOLOv2 [17] DarkNet-19 21.6 44.0 19.2 5.0 22.4 35.5

YOLOv3 [6] DarkNet-53 33.0 57.9 34.4 18.3 35.4 41.9

SSD512 [7] ResNet-101 31.2 50.4 33.3 10.2 34.5 49.8

DSSD512 [18] ResNet-101 33.2 53.3 35.2 13.0 35.4 51.1

RetinaNet [19] ResNet-101-FPN 39.1 59.1 42.3 21.8 42.7 50.2

FSAF [28] ResNet-101-FPN 40.9 61.5 44.0 24.0 44.2 51.3

TridentNet [15] ResNet-101-FPN 42.7 63.6 46.5 23.9 46.6 56.6

Faster R-CNN [22] ResNet-101 34.9 55.7 37.4 15.6 38.7 50.9

Faster R-CNN [22] ResNet-50-FPN 36.7 59.0 39.3 21.8 39.8 45.2

Faster R-CNN [22] ResNet-50-PAFPN [26] 36.9 58.6 39.4 21.6 40.2 47.0

Faster R-CNN [22] ResNet-101-FPN 38.8 60.9 42.1 22.6 42.4 48.5

Faster R-CNN?SAFS (Ours) ResNet-50-FPN 37.3 59.4 40.1 21.8 40.4 46.1

Faster R-CNN?SAFS (Ours) ResNet-50-PAFPN [26] 38.1 60.2 40.6 22.4 42.2 49.0

Faster R-CNN?SAFS (Ours) ResNet-101-FPN 39.3 61.4 42.6 23.0 42.8 49.3

Libra R-CNN [24] ResNet-50-FPN 38.7 59.9 42.0 22.7 41.2 47.6

Libra R-CNN [24] ResNet-101-FPN 40.3 61.3 43.9 22.9 43.1 51.0

Libra R-CNN?SAFS (Ours) ResNet-50-FPN 39.4 60.6 42.9 23.4 41.9 48.4

Libra R-CNN?SAFS (Ours) ResNet-101-FPN 41.2 62.2 45.1 23.7 44.2 51.5

Cascade R-CNN [23] ResNet-50-FPN 40.7 59.3 44.1 23.1 43.6 51.4

Cascade R-CNN [23] ResNet-101-FPN 42.4 61.1 46.1 23.6 45.4 54.1

Cascade R-CNN [23] ResNeXt-101-64x4d-FPN 44.8 63.8 48.7 26.2 48.0 56.8

Cascade R-CNN [23] ResNeXt-101-64x4d-DCN-FPN 47.7 66.9 51.5 27.8 50.9 61.2

Cascade R-CNN?SAFS (Ours) ResNet-50-FPN 41.3 59.8 44.9 23.4 43.7 52.7

Cascade R-CNN?SAFS (Ours) ResNet-101-FPN 43.0 61.6 46.7 24.1 45.9 55.0

Cascade R-CNN?SAFS (Ours) ResNeXt-101-64x4d-FPN 45.3 64.2 49.2 26.5 48.3 57.8

Cascade R-CNN?SAFS (Ours) ResNeXt-101-64x4d-DCN-FPN 48.3 67.5 52.4 28.6 51.5 62.3

Best results of our own methods comparing to others are highlighted in bold

ResNet [35] and ResNeXt [36] are two popular CNN backbones in current object detection methods. DCN represents the deformable convo-

lutional network [37], and PAFPN represents the path aggregation feature pyramid network [26]
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5 Experiments

In this section, we conduct experiments on the COCO

dataset [29] as well as PASCAL VOC [38] and UVM [39]

dataset. Following the general training strategy for COCO,

we train our models with the union of 80k training images

and 35k subset of validation images (trainval). In this

section, we describe the implementation details and eval-

uation metrics. Then, we conduct ablation experiments on

COCO minival set. Finally, we illustrate the comparison of

our proposed method with state-of-the-art object detectors

on a set of 20k test-dev set.

5.1 Implementation details

Due to the hardware differences, we reimplement our

method as well as state-of-the-art methods in our experi-

mental environment. Specifically, both baselines and SAFS

methods are trained in a batch size of 8 on 4 NVIDIA

1080Ti GPUs with 12 GB memory. Following standard

object detectors’ training strategy, the network backbones

are pre-trained on the ImageNet dataset [33] and then fine-

tuned on the detection dataset. For fair comparison, the

input images are resized to have a short side of 800 pixels

and long side is no more than 1333. All the models are

trained in an end-to-end manner. Following the learning

schedule in detectron [34], we train 12 epochs (� 90k

iterations) in total with learning rate starting from 0.01 and

decreased by a factor of 0.1 at the eighth and tenth training

epoch. As for the trainable parameter b in SAFS module,

we use constant initialization 0.1.

For the evaluation, we experiment our method on MS

COCO benchmark as well as PASCAL VOC [38] and

UVM [39] datasets. We report the standard COCO evalu-

ation metrics of Average Precision (AP) as well as AP50
and AP75. For validating the scale variation performance,

Fig. 7 Weight distribution in P2 to P5 RoI feature levels in our method
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we report COCO-style APs, APm and APl on objects of

small (less than 32� 32), medium (from 32� 32 to

96� 96) and large (greater than 96� 96) sizes.

5.2 Ablation studies

The key idea of SAFS module is to develop a soft feature

fusion strategy to weight the RoI features from different

levels. Apart from soft selection mechanism, there are

several RoI feature fusion methods such as summing and

concatenation. In order to discuss which fusing strategy is

better in current two-stage object detection approaches,

we compare the effectiveness and difference of them, in

which these different strategies are performed in the same

baseline. Table 2 reports the AP of various IoU threshold

as well as AP for small, medium and large objects sep-

arately. As it could be observed, the results for medium

and large objects present a large margin (2–4%) between

our SAFS and baseline method. In addition, even with

RoI Pyramid to extract multi-scale features, concatenation

strategy to fuse RoI features seems not to be a satisfied

way. This might be explained that concatenation is the

operation with more tricks leading to large difficulty in

optimization during training. Comparing with other

strategies, our SAFS using soft selection in multi-level

feature selective structure could obtain the best results in

minival subset. Therefore, we perform the rest experi-

ments with this strategy.

5.3 Comparison with state of the arts

We evaluate our complete SAFS method on the COCO

test-dev set to compare with current state-of-the-art object

detection approaches. For a fair comparison, we report the

results of single model with single-scale testing for all

methods. The detection results are shown in Table 3. As it

can be seen, our proposed SAFS pushes the envelope of

accuracy boundary to a new level. Under the cooperation

of multi-scale RoI Pyramid and scale-aware feature, two-

stage object detectors could obtain approximately 0.6% to

0.7% AP improvement. Comparing with AP under various

IoU threshold, our SAFS could achieve 0.8% AP75 higher

than corresponding approaches that are not deployed with

SAFS, which indicates that our method plays a significant

role in more precise object localization. In addition, SAFS

module could also alleviate scale variation problem in

object detection task, which brings different amplitudes of

AP improvement. In particular, there is a huge margin in

APl with 2% on the comparison. This phenomenon

explains that multi-scale RoI features with region-guided

weighting and fusion are much more important than single

feature consideration. Finally, our method performs 48.3%

AP on COCO test-dev set, which achieves the state-of-the-

art object detection performance.

5.4 Analysis and discussion

In order to further study the effect of our SAFS module, we

visualize the weight distribution on a different RoI Pyramid

with various sizes of input instances, which is shown in

Fig. 7. Note that P2 to P5 represent the different down-

sampling spatial stride in RoI Pyramid. Obviously, under

the guidance of our learned SAFS module, the RoI feature

at each level in RoI Pyramid could be effectively learned

and recalibrated according to the size of input instance. In

detail, the learned weight distribution follows the popular

feature selection strategy of most researchers, in which the

network tends to capture more information from low-level

RoI features (P2 and P3 levels) when the input instance is

regarded as small object (w\w0 and h\h0). On the con-

trary, high-level RoI features (P5 level) might be endowed

with a large weight for classifying the instances with large

sizes. However, different from current expert consensus of

hard feature selection strategy, our SAFS module proves

that only 40% low-level information is enough for small

instance classification task in current two-stage object

detectors. Besides, high-level RoI features are also signif-

icant for these small objects in improving detection per-

formance with 30% feature selected from P4 level. And for

large objects, the network not only samples RoI features on

P5 level, but also automatically captures around 10% from

P2 and P3 feature levels. This indicates that a small amount

of low-level information could dramatically help the clas-

sification accuracy of large-size objects.

For detailed quantitative evaluation of our proposed

SAFS, we conduct an error analysis on COCO minival set.

Figure 8 shows the comparison of baseline method (the left

column) and our SAFS approach (the right column) in

three categories frisbee, skis and sheep that indicate small,

medium and large objects, respectively. The overall AP

performance of our method could achieve 72.7% and

49.9% at IoU = 0.75 for frisbee and sheep categories.

Specifically, comparing with baseline, our SAFS module

boosts the AP to 84.6%, 65.8% and 80.2% under perfect

localization. For small and medium sizes of objects (frisbee

and skis), the AP boundary could be pushed more than 1

point higher than baseline, which shows that when elimi-

nating background false positives, the BG for these two

categories increases from 91.1 to 92.1% and 87.1 to 88.1%.

This is in line with the goal of SAFS module to improve the

instance classification accuracy. Therefore, our approach

shows a superior performance over baseline.

In terms of qualitative evaluation, we visualize some of

detection results in Fig. 9. It turns out that SAFS module
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could help current two-stage detectors in improving per-

formance on detecting objects with various scales. In our

method, under the RoI feature fusion, the misdetected or

misclassified instances could be found and corrected pre-

cisely. In addition, the confidence scores of instances are

also largely improved, which indicates that SAFS module

is more robust to object detection. Therefore, it could be

concluded to prove the effectiveness of our proposed SAFS

module.

Fig. 8 Quantitative evaluation of detection performance on COCO minival set. From top to bottom row: performance comparison on frisbee, skis

and sheep categories. The baseline is performed by Faster R-CNN with ResNet-50, and our SAFS is also deployed in this approach

Neural Computing and Applications

123



5.5 Generalization capacity

Detection performance on other benchmark: We also

validate the detection performance of our SAFS on the

other popular benchmarks, e.g., PASCAL VOC and Retail

UVM. The results are shown in Table 4. As it could be

seen, on PASCAL VOC benchmark, the baseline detector

helps improve a slight point when employed with our

SAFS module. In addition, on another object detection

dataset UVM [39], we could also find that SAFS module

contributes to an obvious improvement on total AP metric,

especially AP under IoU 0.75. This could conclude that our

method shows to be a good way to detect objects in a finer

level.

Inference timing: The real-time performance of our

method SAFS is demonstrated in Fig. 10. The baseline is

Faster R-CNN [22], Libra R-CNN [24] and Cascade

R-CNN [23] with backbone ResNet-50 to ResNet-101 [35],

Fig. 9 Qualitative detection performance on COCO minival set. From
left to right column: performance comparison on ground truth, Faster

R-CNN [22], Libra R-CNN [24], Cascade R-CNN [23] and our SAFS

method. Note that SAFS is deployed on Cascade R-CNN detector and

the CNN backbone is VGG16 [2] for SSD512 [7] and ResNet-50 [35]

for others. Each color belongs to an object category

Table 4 Detection performance comparison on Retail UVM datasets [39]

Benchmark Method Backbone SAFS AP AP50 AP75 APs APm APl

PASCAL VOC [38] Faster R-CNN* [22] ResNet-50-FPN – 78.9 – – – –

Faster R-CNN [22] ResNet-50-FPN U – 79.6 – – – –

UVM [39] Faster R-CNN* [22] ResNet-50-FPN 74.4 96.8 86.4 – 31.8 74.8

Faster R-CNN [22] ResNet-50-FPN U 79.9 99.0 95.4 – 34.0 80.0

* is reimplemented in our experiment environment for fair comparison. This might be some slight differences (around 0.1 to 0.3)

Here, we adopt Faster R-CNN [22] with ResNet-50 [35] as baseline. Our method SAFS is also employed in this approach. *Indicates our

reimplementation
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and our SAFS is also deployed in this setting. It could be

concluded in Fig. 10 that our method could achieves a

good trade-off on detection performance and inference

time. This is because the computational overhead of SAFS

module is usually small with a few training parameters

compared to various popular object detectors, at testing

phase.

Limitation and future work: Even though our SAFS has

shown an acceptable generalization capacity on generic

object detection task, there exist several limitations when

adopting it into more practical and general circumstance.

We visualize some detection failures in Fig. 11. It could be

summarized that our method might not achieve a satisfied

detection performance on the objects that are densely dis-

tributed with small sizes. This could be explained by the

limited contribution from coarse feature levels for tiny

objects’ semantics. In addition, our method attempts to

improve the detection performance in local level, while the

qualities of region proposals for dense tiny objects in

Fig. 10 Inference time comparison on our method (SAFS) with some

other popular object detectors. Expect for Yolo v3, each node in this

line chart indicates the different CNN backbone adopted, from

shallow to deep

Fig. 11 Failure cases on COCO

minival set. From left to right:

ground truth and detection

results performed by Faster

R-CNN with ResNet-50

involving our SAFS
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global level might be decreased. Therefore, in the future

work, we aim to design a specific detector to deal with this

situation.

6 Conclusion

In this paper, we present a simple but effective module for

improving the performance and alleviating scale variation

problem of current two-stage object detectors named scale-

aware feature selective (SAFS) module. In our method, we

propose a RoI Pyramid structure to extract multi-scale RoI

features. Instead of simply harshly summing or concate-

nating them, we develop a novel weighting gate function to

automatically learn the weights under the input instance

size, which could achieve scale-aware training and infer-

ence scheme. Experimental results show that our SAFS

module could be very compatible with most of two-stage

object detection architectures and bring a significant

improvement comparing with state of the arts. We believe

that SAFS could benefit current computer vision commu-

nity and beyond.
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