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Abstract—Specialized control of pests and diseases
have been a high-priority issue for the agriculture indus-
try in many countries. On account of automation and cost
effectiveness, image analytic pest recognition systems are
widely utilized in practical crops prevention applications.
But due to powerless hand-crafted features, current image
analytic approaches achieve low accuracy and poor robust-
ness in practical large-scale multiclass pest detection and
recognition. To tackle this problem, this article proposes a
novel deep learning based automatic approach using hy-
brid and local activated features for pest monitoring. In the
presented method, we exploit the global information from
feature maps to build our global activated feature pyra-
mid network to extract pests’ highly discriminative features
across various scales over both depth and position levels.
It makes changes of depth or spatial sensitive features in
pest images more visible during downsampling. Next, an
improved pest localization module named local activated
region proposal network is proposed to find the precise
pest objects positions by augmenting contextualized and
attentional information for feature completion and enhance-
ment in local level. The approach is evaluated on our seven-
year large-scale pest data-set containing 88.6 K images (16
types of pests) with 582.1 K manually labeled pest objects.
The experimental results show that our solution performs
over 75.03% mean average precision (mAP) in industrial
circumstances, which outweighs two other state-of-the-art
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methods: Faster R-CNN with mAP up to 70% and feature
pyramid network mAP up to 72%.

Index Terms—Convolutional neural network (CNN),
global activated feature pyramid network, local activated
region proposal network, pest monitoring.

NOMENCLATURE

t̂i Ground truth coordinate of bounding box.
t̂i Ground truth label.
a Output of convolution operation and activation function.
AP Average precision.
bk Bias of convolution kernel k.
C Number of channels of feature map.
FN False negatives.
FP False positives.
H Height of feature map.
IoU Intersection-over-union.
Pr Precision.
Re Recall.
ti Predicted coordinate of bounding box.
ti Predicted label.
TP True positives.
W Width of feature map.
Wk Weight of convolution kernel k.

I. INTRODUCTION

S PECIALIZED and effective pest control and monitoring
in agriculture is becoming an increasingly serious issue

all around the world [1]. The urgent demand for efficiently
controlling and inspecting the occurrence of agricultural pests
in fields has driven the rapid development of industrial pest
prevention solutions and intelligent pest monitoring systems,
such as chemical pesticides [2], image analytic systems [3], auto-
matic adjustable spraying device [4], status estimation of wheat
plants [5], remote sensing [6], etc. On account of automation
and cost effectiveness, image analytic based pest recognition
and monitoring systems are widely utilized in practical crops
prevention applications. Typically, these systems install some
stationary pest trap devices or facilities in the wild fields for
real-time acquisition and transmission of trap images, and then
employ advanced image analytic techniques [7]–[10] into these
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Fig. 1. Pipeline of our pest monitoring system in field environment. The pest detection approach consists of two parts: GaFPN and LaRPN. Our
system takes an image captured from in-field environment by our pest monitoring equipment as input, extracts high-quality feature representation
by GaFPN and then localize pest regions as well as enhance the features with local activation module for pest recognition. Finally, our system
evaluate the pest severity by the high-level detection results.

images for identification and extraction of pest-associated data
in support of intelligent prediction and prevention.

Abovementioned advanced image analytic techniques enable
abundant success in effectively detecting and recognizing spe-
cific pest species. Yet, utilizing these techniques in design-
ing as well as developing practically useful and robust pest
monitoring system is still unsatisfied. The first reason for this
problem is that extracted features as pest descriptors are short
of sufficient details for tiny and blurred pest objects in 2-D
static images captured by stationary devices. These pose a
fundamental dilemma that it is hard to distinguish small objects
from the generic clutter in the background. Also, traditional
machine learning approaches have been suffering from many
limitations such as powerless hand-crafted features and the lack
of expert consensus. Besides, most of current systems focus
on whole pest image classification rather than detection, which
aims to localize and identify each pest instance in the image
that is necessary for high-level pest analysis promoting more
efficient pest monitoring systems in the wild. Therefore, toward
large-scale multiclass pest monitoring, it is highly necessary to
develop a novel automatic approach by mining more valuable
information as highly discriminative features for pest detection.

Recently, adv ances in deep learning techniques have led to
significantly promising progress in the field of generic object
detection, like SSD [11], faster R-CNN [12], feature pyra-
mid network (FPN) [13], and other extended variants of these
networks [14], [15]. Among these approaches, two-stage object
detection architectures are the most popular in dealing with
practical problems due to higher detection accuracy. In faster
R-CNN, region-of-interest (RoI) pooling is used to extract
features on a single-scale feature map. But targeting at small
object detection, FPN is a better state-of-the-art technique over
COCO data set [16] with mean average precision (mAP) up

to 56.9%. By building up a multiscale image pyramid, FPN
enables a model to detect all objects across a large range of
scales over both positions and pyramid levels. Besides, fea-
ture pyramid structure built on convolutional neural network
(CNN) has become a wide selection as it covers low-level object
features and high-level semantic features simultaneously. This
property is particularly useful to tiny object detection like pest
detection.

In this context, this article targets at finding out a practically
effective and robust pest monitoring solution by studying the
state-of-the-art deep learning methods to solve the problems in
current large-scale multiclass pest detection task. As shown in
Fig. 1, in our presented method, we first construct a CNN based
feature pyramid architecture to ensure the pests across various
scales could be found, and then propose a global activated fea-
ture pyramid network (GaFPN) for retrieving depth and spatial
attention over different levels in the pyramid network. Compared
to [12] and [13], this approach, the adjusted network will enable
variance or changes of spatial or depth sensitive features in
images more visible in the pooling layers. This property will
allow some missing features of tiny pests in pooling layers in
one level to be redetected by many pyramid levels. Next, an
improved pest localization module named local activated region
proposal network (LaRPN) is proposed to find the precise pest
objects positions by augmenting contextualized and attentional
information for feature completion and enhancement in local
level. Following this idea, we integrate GaFPN and LaRPN
into a two-stage CNN approach. It is evaluated over our newly
published large-scale pest detection specific image data set
containing 88.6 K raw images with 582.1 K manually labeled
pest objects. The image data were collected in the wild field
using mobile camera over seven years. The experimental results
show that our approach achieves over mAP of 75.03%, which
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outweighs two other state-of-the-art methods [12] with mAP of
70% and [13] mAP of 72%.

The major contributions of this article are as follows.
1) A novel two-stage CNN based pest monitoring approach

using hybrid global and local activated feature is de-
signed for large-scale multiclass pest data set. It is imple-
mented as a practically automatic pest monitoring system,
which accurately and effectively detects 16 types pest in
fields.

2) The proposed approach introduces two novel global and
local activation branches: GaFPN and LaRPN for auto-
matic multiscale feature extraction and efficient region
providing and fine tuning, respectively. Our approach
could help recognize and extract discriminative features
of tiny objects as well as accommodate large variations
and changes of distribution of tiny objects over images.
It benefits the precise measure and prediction of pest in
complex circumstances with multiclass pest insects.

3) A comprehensive and in-depth experimental evaluation
on practical industry level large-scale pest data set (88.6 K
images) is provided for verifying the usefulness and ro-
bustness of the proposed system and approaches. The
results show that our approach delivers an mAP of
75.03% over 16 types of pest detection, which out-
weighs two other state-of-the-art methods: Faster R-
CNN [12] with mAP up to 70% and FPN [13] mAP
up to 72%.

II. RELATED WORK

In agriculture systems, artificial intelligence and machine
learning techniques have been widely used in various monitoring
tasks. Ruan et al. [17] propose to mine valuable information from
agriculture big data to guide the precise management of apple
plant for growers. However, environment information might not
be enough for building a mature and comprehensive monitor-
ing system while pest is one of the major risks in agriculture
applications. In this case, typical image analytic techniques
for pest monitoring focus on the study of object identification,
including feature extraction and pattern recognition. Early works
on insect classification include RGB multispectral analysis [8]
and principle component analysis algorithm [18]. Then, more
valuable and representative features are considered for precise
pest recognition such as size, color [19], shape, and texture [20].
But these types of features were too weak to be insensitive
to rotation, scale, and translation. Thus, scale-invariant feature
transform in modern computer vision techniques are popular to
realize rotational variance for pest classification [21]. On the
other hand, classifiers are key to achieve better model training
performance, such as support vector machine [22], K-nearest
neighbors [23], and artificial neural network [24]. While the
aforementioned approaches achieved success to some extent,
their results rely too much on the quality of hand-crafted fea-
tures selection. Toward large-scale multiclass insect data set,
one consequence is that within species, extracted descriptors
show strong similarity to others. Feature vectors with different
species are highly close in feature space to relative variability of

their texture, color, shape, and so on. It is hard to utilize these
approaches in practical pest monitoring applications, since the
process of manually selecting and designing features is laborious
and insufficient for multiclass pest species.

Fortunately, the emergence of deep learning techniques has
led to significantly promising progress in computer vision tech-
niques that facilitates industrial applications development such
as human activity recognition [25], automatic fruit classifica-
tion [26], plant disease recognition [27], and cloud workload
prediction [28]. In smart agricultural applications, under the
combination with Internet of Things, various systems are built
based on deep learning techniques such as U-Net employed
in yellow rust disease monitoring [29] and wild aphid detec-
tion system [30]. But the difficulty of remote sensing image
capturing limits the real-world applications in this work. In
generic image classification and object detection task, CNN has
exhibited superior capacities in learning invariance in multiple
object categories from large amounts of training data [31]. It
enables suggesting object proposal regions in detection process;
and extract more discriminative features than hand-engineered
features. By detecting locations [12], [14] and fine tuning [32]
general representation to a specific object category, CNNs per-
form well in object detection. Some two-stage approaches [12]
utilizes dense sliding window to find out the possible object
regions with low-level cues. They localize the better proposals
and share the weights of convolutional layers compared with
other detectors. They perform even better than one-stage CNN
based approaches with higher accuracy of object detection. The
abovementioned deep learning methods [11]–[14] have shown
great accuracies in many general object detection applications
beyond what can be achieved by previous methods [22]–[24],
but they are often intractable for pest monitoring applications.

Toward large-scale multiclass pest monitoring, deep learning
methods need to integrate with other techniques like feature
pyramids [13] for improved performance. The experiment re-
sults on the Microsoft COCO data set [16] shows that two-stage
object detection framework such as faster R-CNN is an effective
region-based object detector toward general object detection
with a mAP up to 42.7% because of region proposals are
computed at the first stage. But for small object detection, FPN is
a better state-of-the-art technique over COCO data set with mAP
up to 56.9% due to the fused low-level object features and high-
level semantic features. Despite the fact that faster R-CNN has
shown great accuracies in generic object detection applications,
they are often intractable for use in practical real-world small
object detection. Taking our targeted pest detection in the wild
as an example, designing an effective deep learning approach is
extremely difficult due to many constraints.

1) The intuitive features of pest like texture, shape, or color,
are easily confused with background information.

2) Features of tiny pest like rotation, scale, and translation,
are too weak and insensitive to be recognized.

3) Many deep learning approaches focus on solving clas-
sification of different pests, rather than pest detection
(localization and counting).

4) Large variations of density distribution and sizes of tiny
pests make the activation of some objects even smaller
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and insensitive with each pooling layer through a deep
learning architecture.

In order to overcome the abovementioned obstacles, we at-
tempt to propose a new effective deep learning approach toward
large-scale multiclass pest monitoring by using hybrid global
and local activated features.

III. APPROACH OVERVIEW

Our proposed approach is a two-stage CNN based pest de-
tection and classification pipeline shown in Fig. 1. Two major
stages in this approach are GaFPN for automatic multiscale
feature extraction and LaRPN for generated boxes classification
and regression. Under the powerful global and local feature
extracted, the output of our system consists of pest localization,
classification, and severity estimation tasks.

In the first stage of feature extraction, our system relies on
traditional CNN backbone by introducing a new GaFPN, which
is aggregated on each convolutional block for screening and
activating depth and spatial information from feature maps out-
putted by each block. Multiscale image features extracted from
GaFPN are used to rebuild the feature maps. This design has two
considerations: first, sufficient shallow layers enables mining
more valuable semantic features for classification. Second, the
bottom layers with high spatial information are fully utilized for
avoiding some features vanish in deep CNN block.

In the second stage, based on feature maps extracted from
stage one, an improved LaRPN is proposed for providing region
proposals and fully connected layers, which are adopted for
pest classification and position regression. Different from the
standard region proposal network (RPN), we augment local
contextualized and attentional information into region proposals
for providing more efficient and precise regions.

Finally, we adopt several fully connected layers for the fi-
nal pest localization and classification results in addition to
high-level semantic analysis outputs for pest severity estimation
including pest quantity counting and severity prediction. The
entire training and inference phase run automatically to achieve
effective pest recognition and classification without any human
intervention so our method is an end-to-end system.

IV. MATERIALS AND METHODS

A. Data Set Setup for Large-Scale
Multiclass Pest Detection

To the best of our knowledge, while there exist some open
insect databases released, no existing large-scale data sets that
cover multiclass pests in the wild or natural environments
are released for study yet. We establish our large-scale mul-
ticlass pest data set by designing an industrial stationary pest
monitoring equipment shown in Fig. 2. This equipment uses
multispectral light trap for attracting various types of pests,
where the wavelengths vary with time according to the habit
of pests in the day. Meanwhile, HD camera abovementioned
the tray of our equipment is set to take pictures at 2592 × 1944
resolution periodically at 15-s intervals. Pests in the trays were
swept away after photographing to avoid images containing

Fig. 2. Stationary pest monitoring equipment in our work. The data set
published in this article is collected by this equipment. Besides, we also
deploy our system into it for practical pest monitoring.

TABLE I
STATISTICS ON TWO SUBSETS FOR OUR DATA SET WITH TRAINING SUBSET

AND VALIDATION SUBSET. FOR EACH CLASS, THE NUMBER
OF IMAGES AND OBJECTS ARE SHOWN IN THIS TABLE

Note that because single image may contain objects of several classes, the total shown
in the #images columns are not simply the sum of the corresponding columns. (CM:
Cnaphalocrocis medinalis, CMw: Cnaphalocrocis medinalis (walker), MS: Mythimna
separate, HA: Helicoverpa armigera, OF: Ostrinia furnacalis, PL: Proxenus lepigone,
SL: Spodoptera litura, SE: Spodoptera exigua, SI: Sesamia inferens, AI: Agrotis ipsilon,
MB: Mamestra brassicae, HT: Hadula trifolii, HP: Holotrichia parallela, AC: Anomala
corpulenta, GO: Gryllotalpa orientalis, AS: Agriotes subrittatus).

582,170 pests of 16 different types after manual screening to
deleting obscure and over-occulted images are used to build our
data set.

Hereafter, images are labeled by agricultural experts with
pest categories, localization, and severity. we randomly split
entire collected images into two subsets for model training and
validation respectively at the ratio of 9:1, in which training subset
is employed to supervise our model because of labels with expert
consensus and validation subset is used to evaluate our system’s
performance. The statistics of our data set are provided in Table I.

B. Convolutional Neural Network (CNN) Framework

The approach built on a standard CNN framework is com-
posed of three parts: convolutional layer, activation function, and
pooling layer. Typically, many combinations of these layers are
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Fig. 3. Structure of GaFPN. There are two parallel branches in GaFPN for activating depth and spatial features, respectively. Note that the GAM
is applied in various feature levels (coarse, mid, and fine).

adopted to extract 3-D image features, in which images are input
into convolutional layers computed with several convolutional
kernels for feature extraction.

Standard convolutional layer takes a set of convolutional ker-
nels to the input and the output feature map in each subsequent
layer are regarded as abstract transformations of image. Gener-
ally, for each convolutional kernel k, the forward propagation
process of convolution in layer l could be represented by

alk = σ(zlk) = σ(al−1 ∗W l
k + bl) (1)

where the alk and al−1 are output of kernel k from layer l
and l − 1. σ(·) represents ReLU function [33] for nonlinear
transformation in our approach. ∗ indicates the convolution
operation. W l

k and blk represent the convolution kernel and bias
in layer l, respectively. Therefore, the output convolutional layer
could be computed as the sum of outputs from the set of kernels

al = σ(zl) = σ

(
M∑
k−1

zlk

)
= σ

(
M∑
k=1

(alk ∗W l
k) + bl

)
(2)

C. Global Activated Feature Pyramid Network (GaFPN)

Based on standard CNN architecture, we design our feature
extraction network named GaFPN whose structure is shown
in Fig. 3. The motivation of designing feature pyramid is the
observation that recognizing pests at vastly different scales in
images is challenging for detectors in a single feature map.
Thus, we exploit the inherent multiscale hierarchy of CNN to
achieve feature extraction at various scales to ensure that pests
with different sizes are recognized with sufficient information
and avoid missing features of some tiny pests during downsam-
pling. In GaFPN, the powerful representative information from
all convolutional blocks, including high-resolution levels and
high-semantic levels, could be featurized to produce a multiscale
pest feature descriptor.

Different from the popular object detection framework
FPN [13], our GaFPN makes full use of global information
between each convolution block to avoid information loss during
downsampling operation. As it is well known, feature maps
outputted from CNN layers could be a result of convolutional
operation with set of kernels. The number of kernels corresponds
to be the feature depth and each kernel is learned to extract the
specific feature type such as shape and texture. Therefore, we

attempt to make our system automatically mine the depth activa-
tion vector that weighs the convolutional kernels for highlighting
the requirement of various feature types for pest detection in
our work. As for spatial activation, we observe that limited
receptive field of convolution operations might lead to power-
less features in pests positions without appropriate supervision.
So, we propose a novel supervised mask to learn the spatial
activation vector that could activate the potential positions of
pests. Under these motivations, our GaFPN is proposed to
achieve depth and spatial activation in global level that aims to
improve the feature discriminating power of pest objects from
background.

Fig. 3 shows the structure of our GaFPN, in which global
activation module (GAM) contains two branches for depth and
spatial activation, respectively. In the upper branch of depth
activation, the 3-D feature map with shape of W ×H × C
outputted from CNN block is first processed by a global pooling
layer that averages all the pixels in each channel (depth) and
generates a lower-dimensional (1-D) feature vector (1 × 1 × C)
so the effect of spatial information is ignored. By taking global
pooling, the averaged feature vector describes the global feature
in depth level. Next, we apply two sets of fully connected layers
with nonlinear activation ReLU [33] and sigmoid, respectively,
in which the latter aims to map the feature vector into (0, 1).
In this way, the output 1-D vector could be learned as depth
activation factor in training phase. The final output of depth
activation module is the broadcast element-wise product of the
input 3-D feature maps (W ×H × C) and 1-D depth activation
factor (1 × 1 × C). In this way, the feature maps are activated
in depth.

The second branch of GAM in Fig. 3 is designed for activating
spatial position that introduces a novel supervised mask to learn
a spatial activation vector. Specifically, the spatial activation
branch is a segmentation-like training method, in which the
supervised mask is obtained by fulfilling 1 into the ground truth
positions and 0 into the background areas. In this part, the input
feature map with shape of W ×H × C is input into a global
convolution operation that reduce the number of channels to
1 and the output is a W ×H × 1 feature vector, which could
ensure the spatial activation vector is learned in spatial level.
Then, we employ two sequential convolution operations with
ReLU and Sigmoid function followed which is similar to depth
activation branch. For training the spatial activation weights,
we adopt pixel-wise sigmoid across entropy as the supervised
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Fig. 4. Structure of LaRPN. This module is improved from standard
RPN, in which we introduce contextual and spatial attention mechanism
to enhance the feature quality for each pest region.

attention training loss. At last, the learned spatial activation
factor is fed into exponential operation to maintain the original
global information and then multiplied with the input 3-D feature
maps in each position. In this way, our spatial activation branch
could enhance the feature maps in pest objects area and diminish
the opposition.

Finally, the output of each block in GaFPN is the sum of the
activated feature maps from two parallel branches in different
CNN levels.

D. Local Activated Region Proposal Network (LaRPN)

Under the GaFPN module, our system could localize the
pests’ positions in global level of input image. For achieving
precise pest recognition in our work, we propose LaRPN to
further refine the pest features in local level.

The first motivation of “local activated” is that part of region
proposals provided by standard RPN might not cover complete
information of target objects. This would result in inaccurate
box regression with insufficient features because RoI Align [34]
is used to “crop” the regions into local level from global feature
maps. To solve this problem, we augment extra contextual
information [15] to ensure that enough object features could
be considered into box regression. Second, the local spatial po-
sitions might also contribute to pest recognition task because the
key feature for precise classification might be the fine-grained
characteristics such as colors or shapes of pests’ wings.

Motivated by these observations, we propose an improve-
ment of standard RPN named LaRPN to take contextual and
attentional information into consideration to locally activate the
region proposals provided by RPN, whose structure is shown
in Fig. 4. There are three steps in our LaRPN. First, apply the
standard RPN [12] with our assigned anchors in each output
feature maps from GaFPN with various levels of feature pyramid

structure. During training phase, the anchors with intersection-
over-union to ground truth more than 0.7 are regarded as prelim-
inary pest regions. Next, we expand these positive regions to be
1.5 times larger in four different directions to ensure the regions
could cover larger areas as contextual information. And the
enriched pest regions are mapped to feature maps and processed
by RoI Align [34] to extract local features. Finally, we introduce
self-attention mechanism [35] with three parallel branches to
obtain the local attention vector in spatial level. Therefore, the
relationships among different positions of pests could be learned
and the output is multiplication of regions and spatial activated
map. Finally, the output feature is used for pest recognition and
box fine tuning.

E. Training and Evaluation

We use large-scale pest data set for training and validating
our proposed approach. Different loss functions are selected as
supervisory indicators for pest localization, classification, and
estimation training. Besides, a number of evaluation metrics
were built to access the performance of our system on these
tasks.

Pest Localization: Pest localization aims to predict bounding
boxes of pest regions for input image. To validate the perfor-
mance of pest localization task, we pay more attention to the
positioning accuracy rather than the categories of pest species.
Therefore, we consider sigmoid cross entropy loss as the crite-
rion for indicating pest region objectness as well as smooth L1
loss for pest region box regression in this task referred by [12],
which is the combination of L1 and L2 norm defined as

LossL =
∑

i∈{x,y,w,h}

{
0.5(ti − t̂i)

2 ∣∣ti − t̂i
∣∣ < 1∣∣ti − t̂i

∣∣− 0.5
∣∣ti − t̂i

∣∣ ≥ 1.
(3)

In this loss function, a region could be characterized by
{tx, ty, tw, th} in which {tx, ty} are the upper-left coordinates
of boxes and {tw, th} are the width and height. Thus, ti and
t̂i represent the ground truth and localized bounding boxes,
respectively.

In terms of evaluation metrics, binaryprecision (Pr) and recall
(Re) are chosen to validate the pest localization performance in
our work. During validation phase, the regions are predicted into
two categories: objectness and background, in which objectness
(positive) samples are the regions with overlap more than 0.7
with the ground truth bounding boxes while the background
regions are negative ones. The binary Pr and Re are calculated
by

Pr =
#TP

#TP+#FP
(4)

Re =
#TP

#TP+#FN
(5)

in which #TP, #FP, and #FN represent the number of true
positive, false positive, and false negative samples, respectively
so the Pr measures the samples that are incorrectly detected
while higher Re indicates the lower misdetection rate.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 01,2021 at 07:28:57 UTC from IEEE Xplore.  Restrictions apply. 



LIU et al.: DEEP LEARNING BASED AUTOMATIC MULTICLASS WILD PEST MONITORING APPROACH 7595

Furthermore, average precision (AP) for binary pest localiza-
tion is applied as a comprehensive evaluation metric to take
the precision and recall into consideration together. In pest
localization task, the APL is computed by the integration of
precision–recall (PR) curve

APL =

∫ 1

0
Pr dRe (6)

Pest Classification: while localizing pest objects in images,
we classify each bounding box of pest into the corresponding
category. Different from binary classification in localization task
(objectness or background), the bounding boxes are classified
into 16 types that are the major pest species in practical agricul-
tural pest monitoring demand in our work. In this task, we use
multiclass cross-entropy loss for this pest classification problem

LossC =

Ncls∑
i=1

−yi log(ŷi) (7)

where Ncls represents the number of pest categories (in our
task, Ncls = 16). yi and ŷi indicate the truth label and pre-
dicted category, respectively. From the perspective of evaluation
metrics for pest classification, we combine the localization and
classification evaluation methods together to update the AP
value [16] for different categories. Thus, in our system, we
calculate APs for 16 pest species based on their corresponding
PR curves as

AP(c) =

∫ 1

0

Pr(c)dRe(c) (8)

In addition, the final metric for pest classification task mAP
is obtained by taking average of APs from all the pest categories

mAP =
1

Ncls

∑
AP(c) (9)

Pest severity estimation: the high-level task, pest severity
estimation targets at predicting the severity of pest occurrence
from the input image. According to agricultural experts’ con-
sensus, the severities are divided into five levels from “general”
to “serious” that describes the occurrence of pests in the field,
so the images are labeled to I–V by agricultural experts after
image acquisition. In the process of pest severity prediction, the
input features are the combined results from localization and
classification tasks abovementioned as well as the visual features
extracted from pest image. In terms of encoding method, we
adopt a variant of one-hot encoder to transform the pest detection
results into Ncls-dimensional vector, where each element in
this vector indicates the number of detected pests with the
corresponding category. In this input vector, we only focus on
the quantity of detected pests from each category rather than
their positions.

In pest severity estimation task, we build a neural network
with consequent two fully connected layers for feature extraction
and softmax predictor for severity estimation. As criterion, we

TABLE II
PEST LOCALIZATION RESULTS APL

employ a weighted multiclass cross-entropy loss defined as

LossE =

Ncls∑
i=1

−λiyi log(ŷi) (10)

where λi is a hyperparameter to weight the loss function which
measures the risk of different misclassification samples. We
define the risk parameter λi as the difference between predicted
severity and truth severity. As for evaluation, we consider to-
tal accuracy as evaluation metric for pest severity estimation
task.

V. EXPERIMENTAL RESULTS AND DISCUSSION

A. Implementation Details

We use inception [36] and ResNet50 [37] as CNN backbones
to train our pest monitoring model and also build some exper-
iments to evaluate the performance of our system. During the
training phase, The proposed method and other state-of-the-art
approaches are trained via back propagation and stochastic
gradient descent, with momentum 0.9 [38] and initialize learning
rate to 0.001 that will be dropped by ten referred by [39]. The
mini-batch size is set to four in training phase. In terms of weight
initialization, we adopt transfer learning [40] that copy the CNN
backbones’ weights pretrained on ImageNet data set [41]. In
order to avoid over-fitting problem, we utilize early stopping
strategy [42] to select the best training epoch. We conduct our
experiments using two GTX1080Ti GPUs with 12 GB memory.
The performance of our approach is evaluated on our built data
set across multiple tasks: pest localization, classification, and
severity estimation.

B. Pest Localization Task

For pest localization task, the experimental results are pre-
sented in Table II, in which we compare our method with
two state-of-the-art baseline approaches faster R-CNN [12] and
FPN [13] that are the popular detectors utilized in practical
monitoring systems in industrial circumstance. As it can be seen,
our proposed method could dramatically surpass the localization
performance of faster R-CNN using different CNN backbones
for feature extraction, which achieves 5.12% and 4.87% APL

improvement, respectively. Besides, compared with another fea-
ture pyramid method FPN, our system could also obtain a slight
improvement in pest localization task. Among these results of
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Fig. 5. Precision-recall curve for pest localization task.

TABLE III
PEST CLASSIFICATION TASK RESULTS AP VALUE (%).

FR-CNN INDICATES FASTER R-CNN METHOD

our method, the best performance occurs in ResNet50 backbone
which achieves localization accuracy with 83.61% APL.

It is interesting to note the detailed pest localization perfor-
mance between our approach and other state-of-the-art methods
in Fig. 5, which shows the precision–recall curve of various
approaches. Obviously, our proposed global and local activated
approach outperforms faster R-CNN by a large margin and
improves FPN architecture slightly. This improvement could be
contributed to two reasons. First, our method with GaFPN ap-
plies a pyramid feature extraction architecture and localize pests’
regions on multilevel feature maps that could help precisely find
pests positions on various scales, which is also evidence from
APL values of our method in Table II. Second, holding global
activation factors by our presented global activated features
for enhancing the depth and spatial information in global level
makes it easier to localize pests’ positions due to the result that
much more highly discriminative features between foreground
and background could be extracted.

C. Pest Classification Task

For pest classification task, we show the AP results in Table III
for 16 pest categories performed by our method and other
state-of-the-art models. Observed from Table III, having pest
localization information associated with the predicted bounding
boxes to pests, our method could achieve more accurate pest

Fig. 6. Illustration of PR curves in our experiments. Note that only four
curves are shown here due to the limited space. (a) PR Curve for class
2. (b) PR Curve for class 3. (c) PR Curve for class 9. (d) PR Curve for
class 16.

recognition on these pest species. It is obvious that our approach
could significantly outperform faster R-CNN in pest classifica-
tion over almost all the pest categories under inception as CNN
backbone. The homologous phenomenon occurs in that using
ResNet50 network with 3.28% mAP improvement. In addition,
our approach could also largely improve mAP compared to the
feature pyramid object detection structure FPN. This gain is
largely due to our LARPN’s ability to introduce the contextual
and local activated information before fully connected layers
for pest classification, which is helpful to sufficiently learn the
features of pest regions in local level.

Apart from mAP results, there are obvious differences within
classes that can be discussed in Table III. Specifically, pest
#8 seems to be the most difficult to be categorized on these
precalculated regions with lowest AP value while almost all the
models could classify pest #15 well on various CNN backbone.
This can be explained by that the pests in the “easy” class hold up
a large number of training examples, which help reduce difficulty
to classify them comparing Tables III and I. Even though, the
amount of data might not be the main factor affecting perfor-
mance of our approach, where pest #16 still could be categorized
with a large AP value (more than 79% AP in our method) even if
there are only 4756 training images containing pests of this class.
Therefore, our method could overcome the sample limitation and
imbalance problem with a great improvement.

Fig. 6 illustrates precision–recall curves for part of pest
categories in our experiments. As it is shown, precision could
keep a high value with the recall increasing in various models.
Especially, our approach using different CNN backbones could
obtain a larger precision and recall compared to faster R-CNN,
which indicates that it could effectively reduce false positive
rate as well as misdetections rate. Concretely speaking, pest #2
is relatively difficult to classify so the PR curve for this class
is further away from the point (1,1). In addition, PR curve for
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TABLE IV
PEST SEVERITY ESTIMATION TASK RESULTS

Fig. 7. Examples of pest monitoring results demonstration. The back-
ground of the input image from top to bottom is getting complicated.

pest #16 represents that it is hard to obtain a high-recall value
but could get satisfied precision value so this curve signifies
that our system could make sure that almost all the detected
insects of this class are correct but might not detect all of the
insects. Furthermore, among these illustrated PR curves, our
system performs best on class #3 that maintains high precision
in addition to recall simultaneously.

D. Pest Severity Estimation Task

For pest severity estimation, our method regards this task as a
classification problem so we achieve severity estimation based
on the encoded results outputted from previous pest localization
and classification tasks as well as the visual features of input
image. In this case, we compare our severity estimation pre-
dictor with the state-of-the-art CNN based models that estimate
severity by softmax classifier using the whole image as input.
Table IV illustrates the comparable results in our experiments.
As it is shown, under the high-level pest detection information
guidance, our method could beat these CNN approaches with ap-
proximately 2% classification accuracy improvement on severity
estimation task.

E. Result Visualization

We visualize part of the pest monitoring results in Fig. 7
that fuses localization, recognition, and severity estimation tasks
together. These results are outputted by our system based on
ResNet50 backbone. The environments of input images from
top to bottom are more and more complicated. As it can be
seen, our method could achieve multiclass pest localization and
recognition under both simple and complicated environments
and provide the predicted severity estimation, despite the in-
tractable challenges such as noisy image and tiny objects. Some
feature maps outputted from two middle blocks with FPN (left)
and our method (right) using ResNet50 are visualized in Fig. 8.
It could be found that, the feature maps in our system diminish

Fig. 8. Part of feature maps generated by FPN (left) and our method
(right). (a) From shallow block by FPN. (b) From shallow block by our
method. (c) From deep block by FPN. (d) From deep block by FPN.

the highlights of nonobjects and focus more attention on pest
regions with lighter activation points with our designed GaFPN
architecture. Therefore, our method could perform better on pest
detection and progressively learn the pests’ features well.

F. Future Work

Despite that we develop a novel deep learning based system
for pest monitoring task in the field and achieve a successful
performance in our data set, there are several limitations of our
method that could be improved in future smart agriculture inno-
vation. First, the unbalanced data structure could be alleviated
in the next work. Specifically, due to the difficulty in capturing
pests of some rare categories in our pest monitoring equipment,
our system tends to identity an unknown pest into the common
species, which might improve the risk of inaccurate pest severity
warning. Besides, it is necessary to achieve the real-time pest
image recognition and detection performance in our system, in
which current inference time might be an important factor that
limits the advances in agricultural applications. Therefore, future
work would target at solving the problem of unbalanced data set
and focus on developing real-time automatic pest monitoring
system.

VI. CONCLUSION

This article proposed a novel deep learning approach using
hybrid global and local activated features for automatic pest
monitoring in industrial equipment to simultaneously perform
three key tasks: localization, classification, and severity estima-
tion. Our method successfully realized efficient and automatic
feature extraction with global activated feature pyramid GaFPN
structure. Furthermore, we presented local activation to enhance
position-sensitive features of pest boxes by LaRPN for powerful
regions proposal. Under our enriched pest data set captured by
our designed stationary pest monitoring equipment, our method
outperformed the state-of-the-art methods in pest localization,
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classification, and severity estimation tasks. Future work will
consider developing more efficient deep learning architecture
for real-time pest monitoring.
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